导航:首页 > 黄金交易 > 量化交易标准买卖点

量化交易标准买卖点

发布时间:2021-10-08 05:36:02

㈠ 个人做量化交易需要注意些什么

一说到量化投资,一下子蹦出来一堆厉害的语汇,例如:FPGA,微波加热,高频率,纳秒等级延迟时间这些。这种全是高频交易中的语汇,高频交易的确是基金管理公司做起来较为适合,平常人搞起来门槛较为高。

模拟交易最后实际效果一般在于你的程序流程是不是灵便,是不是优良的风险性和资金分配优化算法。

总结:对于说本人做量化投资是不是可靠,上边的步骤早已表明了实际可策划方案,可靠性显而易见。对于能否赚到钱,就看本人的修为了更好地。

㈡ 量化交易是什么

量化交易指使用数学模型取代人为的主观性判断,利用计算机技术从庞大的历史回数据中甄选能为企业答带来超额收益的大概率事件以制定有利于企业发展的策略。
从18世纪开始,金融投资的先驱已经开始探索各种不同的投资方法,经过多年的进化,已经尝试了从价值分析、风险套利到日间交易等不同的方向。那么,在目前不断变化的中国资本市场,什么投资方向迫切需要我们深入探索。笔者认为,量化投资作为中国市场的新兴投资方法,正在引来越来越多的关注。
中国投资者对数量化投资,虽不陌生,却仍懵懂。量化投资理论是借助现代统计学和数学的方法,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可持续的、稳定且高于平均的超额回报。
本条内容来源于:中国法律出版社《法律生活常识全知道系列丛书》

㈢ 量化交易是如何把握买卖点的

量化交易就是把你自己的自主交易系统写成电脑程序,在电脑上自动运行自动交易。
你自己自主交易,怎么把握买卖点量化的系统就怎么买卖。

㈣ 什么是量化交易,未来前景如何知道的讲讲。

量化交易,有时候也称自动化交易,是指以先进的数学模型替代人为的主观判断,避免在专市场极属度狂热或悲观的情况下做出非理性的投资决策。
股票市场上,量化交易早不是什么新闻,在国外,七成的交易都是通过计算机决策的,在国内这个数字也接近五成。
过去的股票市场都是靠交易员手动敲键盘来操作的,难免一失手成千古恨,这种行为被戏称为“胖手指”,相比之下,量化交易则如同点石成金的“仙人指”。量化里最美的童话就是“旱涝保收”,牛市也好,熊市也罢,都能大赚特赚。
量化交易的优势:1. 严格的纪律性 2. 完备的系统性 3. 妥善运用套利的思想 4. 靠概率取胜
量化交易的风险性:首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。
满意请采纳答案,有不明白的可以继续提问。

㈤ 股票量化交易是什么

量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交版易分为量化分析和权程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标

㈥ 2.什么是量化交易

量化交易有专门的量化交易系统,是全自动化的交易。
简单的说,是把相关投资模型、投资策略,以计算机程序的形式,放在量化交易系统中,当股市触发了相关条件后,电脑系统会按照预先设定好的策略进行自动买卖。
优点是:1、不存在人性的弱点,纪律性大幅提高。2、人靠眼睛盯盘精力有限,量化策略设定好后,系统可以全方位自动盯盘,可以发现一些人为难以发现的机会,进行无风险或低风险套利操作,交易效率大幅提高。3、可以通过概率取胜。手工统计大数据工作量太大,而通过量化系统则可以很容易实现,系统可以在历史数据中挖掘有望重复的规律并加以利用,以概率取胜。
缺点是:1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。2、网络中断,硬件故障也可能对量化交易产生影响。3、同质模型产生竞争交易现象导致的风险。4、针对专业投资者,有些风险完全可以利用以往操作经验以及盘感进行提前规避,而量化交易则无法办到。

㈦ 量化交易员是策略研发要求高还是交易要求高

在整个量化交易策略的研发流程当中,买和卖是最为基本的量化交易策略组成部分,而这个部分的设定主要与收益情况相关。这里所说的相关,具体分为两种不同的情形,一种是总体的关联性,即基于买点、卖点的选择,买卖策略应该得到一个正的整体收益。另一种则来自于对交易资产未来收益的判断、或者说预测,即判断交易资产的未来收益为正时,就买入资产;判断交易资产的未来收益为负时,则卖出或卖空资产。实际操作中,这两种关联关系的情况可能更为复杂一些。有的时候,买和卖的具体操作也可能受到风险方面设置的影响,例如为了限制单次交易的最大损失而采取止损之类的操作时,用于清仓的买卖设置就会相应的变动,这也是作者将风险和买卖用虚线相连的原因。不过在大部分情况下,买卖这一最为基本的组成部分还是与收益的关系最大,研究者也应该在研发这一个组成部分时,着重考虑收益情况的具体影响。
对量化交易策略风险的控制可能会影响到量化交易策略中的买卖设置,但是在更普遍的情况下,风险这一因素主要影响的是交易仓位的设置。当然,前提条件还是需要买卖策略的总体收益为正,在这样的条件下再结合仓位的设置,才能够在合适的风险水平下取得达到要求的收益。通过对交易资产具体仓位的调整,交易者可以比较直接的控制单次交易以及整个交易策略的风险水平。例如在满仓交易的情况下,定量的判断了当前交易的风险之后,觉得风险过大无法承受,那么最为直接的处理方法就是在满仓的基础上相应的降低仓位的大小。在仓位降低之后,对于整体资金而言风险也就随之降低了。由于仓位本身具有量化、直观的特性,因此当交易者希望将风险处理到一个特定的水平时,调整仓位是一个比较方便的手段。
需要说明的是,前面已经提到了买和卖是量化交易策略最为基本的组成部分,实际上仓位的设定是根据买卖决策和风险两个因素共同形成的,不建立在买卖之上的仓位选择是空洞没有意义的。此外还有一个更为极端的情况,仓位的正确设定有助于进一步优化策略的整体收益,之后要介绍的凯利公式的意义正在于此。在图1中由买卖到仓位的箭头,实际上可以看作是收益、买卖这一个整体部分指向仓位的箭头。不过在实际使用中,凯利公式所导出的仓位设定往往过于偏激,超过正常风险控制下的最高仓位值,因此仓位仍然与风险的关系更为紧密。
在图1这个较为松散的量化交易策略研发流程中,交易成本是和买卖以及仓位具有同等地位的组成部分。在实际操作中,就是首先基于对收益和风险的判断得出合适的买卖和仓位选择,然后在买卖和仓位共同组成的量化交易策略当中考虑交易成本,也就是在建立仓位和退出仓位等操作中扣除所需要承担的交易成本。随后再次判断该量化交易策略所代表的收益和风险情况,只有这两个因素仍然在接受范围之内,才能确认这是一个可行的量化交易策略。虽然最后用来执行的组成部分只有买卖和仓位,但是交易成本作为对量化交易策略的一个实际化修正,也是策略研发流程中一个不可或缺的组成部分。
上面提到的对量化交易策略收益和风险情况的判断,实际上是一个综合性的评价问题。一个最为重要的参考依据应该是策略在整个交易过程中的净值走势,通过对策略净值走势的分析,就可以建立起该量化交易策略运行情况的全面判断。但是净值走势本身由于细节过多,因此无法简单的用来进行策略之间的横向对比。这时就需要精炼净值走势中所包含的信息,选取合适的部分形成量化的评价指标,从而进行量化交易策略的进一步判定。就作者看来,评判一个策略的标准中最重要的仍然是策略在整个交易过程下的收益情况,一个负收益的量化交易策略根本无需考虑其风险即可排除。而当收益为正时,再结合风险的度量进行具体的取舍,就可以直观的给出量化交易策略是否合格的评判标准了。作者心目中最重要的风险指标是策略净值的回撤水平,在后面的案例分析中也会重点查看回撤的结果。
于此同时,一些量化交易策略在进行收益和风险情况的判断时,仅仅针对策略自身的净值走势进行研究是不够的,给出一个合理的基准来进行对比往往是更为有效的判别方法。例如后面的案例中会涉及到的量化选股策略,当交易选择仅限为对具体的股票进行持仓,而不考虑空仓或者卖空时,选取一个特定的基准进行对比就会是一个更为有效的判别方法。这主要是由于量化选股策略的仓位始终为多头,因此不论如何配置,策略所持仓位都含有资本资产定价模型中所提到的市场成分。而选股策略本身的意义在于选择更好的股票、不在于获取市场收益,因此将市场走势作为对比、或者在策略收益中剔除掉市场成分就是一个更合理的做法。
上述所有的操作,都需要建立在对历史数据的分析之上,在量化交易领域当中一般称之为回溯测试,或者简称回测。所谓回溯,也就是将交易的过程在历史数据上复现一遍,这里面包含了一个假设,即历史数据在量化交易策略中展现出的样本特征在未来的交易中依然存在,否则回溯测试就失去了意义。关于这一假设的分析其实在诸多技术分析著作中均有涉及,一般被称为“历史会重演”,这里不再继续展开。不同于传统技术分析的是,量化交易策略的研发过程更加深入具体,在涉及到策略的参数设定、模型设置等具体问题时,需要采用数量化的方法、也就是最优化等技术手段进行解决。例如如何设置买点和卖点可以使得相应的总体收益最大等等,都是很典型的最优化数学问题,那么找到合适的最优化技术和算法并加以应用,就能够确定量化交易策略的最终形式,用以进行实际交易。
图1中所展示的是一个较为松散的一般性框架,用来总领性的说明量化交易策略的基本研发流程。在具体的策略研发过程中,这个框架经常会因为具体研发设置和策略设置的不同而产生变化。例如当量化交易策略的主要作用不是在时间轴上选择具体的买卖时点,而是在同一个时间点上对多个资产进行选择和配置时,图1中的一些说明就显得有些含混不清。量化选股策略就是这一类策略中最为常见的形式,因此这里在整体框架不变动的情况下,针对图1进行了文字上的调整,用以说明量化选股策略的运行框架与研发流程。当然,使用选股策略的框架体系来处理多个资产甚至多个策略的挑选、配置也是可以的,在不复杂的情况下只需要稍作联想即可。

买卖和仓位虽然是更为通用的说法,但是更适合于描述择时策略,放在选股策略的研发框架中会显得比较突兀,因此图2将买卖换成了选股,仓位则换成了配比,这样更容易让读者领会该研发流程的含义。实际上,对于每一期的选股而言,如果选择了原先没有仓位的股票,那么对应的操作就是买入该股票,如果已经建仓的股票没有被选入这一期的股票池,那么对应的操作就是卖出该股票。而配比则是在买卖的基础上,通过仓位大小的变化来实现具体配置。因此,选股和配比实际上可以算作是买卖和仓位选择的特殊情况,只是这种说法更为贴合量化选股策略本身。
略有不同的,是风险在量化选股策略研发流程中的具体含义。由于选股策略的仓位操作涉及到多个股票之间的配比问题,因此这里的风险不仅包括单支股票的风险,也涉及到多支股票之间的风险程度,后一种风险一般采用股票收益之间的相关性来进行描述。例如在一般性的最优投资组合理论当中,经常使用协方差矩阵来刻画整个资产组合的风险水平。虽然从实际情况来看,相关性这一度量方式与风险的直观感受之间有一定的差距,但是在多资产环境下,一般都将资产间的相关性视为风险的来源之一,这是一个偏学术的、约定俗成的做法。
上面的例子是针对选股策略进行的文字上的变动,实际上量化交易策略研发流程的变化更多来自于各个研发组成部分不同的结合方式。而不同的结合方式,对应的是策略研发过程中不同的目标和需求。例如图1所介绍的松散的研发流程,是在确定好买卖行为和仓位设定之后,再针对实际交易中所产生的交易成本进行二次测试。这样的做法虽然简便易行,但是忽视了交易成本本身对于收益的影响,以及更进一步对于买点和卖点的影响。因此,在确定买卖设置的步骤中就考虑交易成本的影响,应该是一个更贴近于实际的研究框架。图3给出了相应的流程刻画,如图所示,在判断收益因素时,同时考虑交易成本对于收益的影响,从而优化出更为实际的买卖设置。再根据相应的风险控制,结合买卖点的选择,得出最后的仓位设置。在确定了买卖和仓位这两个部分之后,就获得了一个完整的量化交易策略。

图4给出了一个更紧凑、更贴合实际操作的量化交易策略研发流程。在该流程中,买卖和仓位的设置是同时作为参数进行优化的,优化的目标函数也进行了唯一化,即量化交易策略的风险调整后收益。而在确定需要优化的目标函数时,交易成本也如同上一个研发流程一样同时被考虑进去,从而保证买卖和仓位优化结果的准确性。毫无疑问,相较于上面所涉及到的研发流程、特别是图1中较为松散的研发流程,该量化交易策略研发流程的各个组成部分更为紧密,因此在优化过程中所产生的与实际操作的偏离也就越小,买卖和仓位设置的准确度也就更高。但是在实际工作中,如果想参照这一流程进行研发,那么就需要比较强的计算能力,数据量的大小也要达到一定要求,同时优化方法和目标函数的设定要能够同时覆盖买卖和仓位的所有参数,因此往往也只有极为简单的策略思路可以采用这样的流程框架进行研发。

在实际的量化交易策略相关工作中,研发只是整个工作流程的一部分,还有两个组成部分需要着重强调。基于此,图5在图1所示的研发流程的基础上给出了一个更为完整的工作流程。如图所示,需要增加的部分包括处于研发过程之前的数据准备工作以及处于研发过程之后的策略执行工作。这两项工作与前面所论述的研发流程具有很强的逻辑关联性与内在依赖性,三者结合起来形成的一个整体,基本上可以涵盖量化交易策略具体工作的绝大部分内容。

首先论述数据准备的工作,循着图5中的箭头可以看到,在量化交易策略的整体工作中,既要为研发过程准备相应的研究数据,也要为策略执行准备相应的实时数据。在研究数据方面,由于寻找合适的量化交易策略需要不断重复研发流程,因此对于数据的要求更偏重于准确性和覆盖能力。同时,对数据的清洗和转换也是一项重点工作,在大部分的数据科学研究、包括量化交易策略的研发当中,数据特征的合理抽取对于整体效果提升的重要性有时甚至要高于精巧的模型,当然很多时候数据的转换和模型的构造是相互融合的,针对具体情况应当采取具体的分析和处理。而在策略执行数据方面,则更应该关注于数据获取的及时性。至于数据的清洗和变换,只需要完全复制研发得到的量化交易策略下的数据准备工作即可。另外,为了保证数据的及时性,最终进行的数据清洗工作对时间消耗存在一定的要求。
然后讨论策略执行的工作。策略执行,是在量化交易策略研发完成之后,最终产出实际效能的组成部分。执行时应该遵循尽量贴近研发完成的量化交易策略的原则,与量化交易策略所确定的买卖、仓位等设置尽可能的保持一致,这样才能最真实的反映出前面量化交易策略的研发结果。同时,策略执行的结果也可以用来反向支持具体的研发流程,通过对策略执行所得到的收益、风险情况的判断,实时的重新进行研发,对量化交易策略进行修改,从而使得策略能够及时的得到现实的反馈,增强自身的稳健程度。值得一提的是,后面将要介绍的推进分析是一种模拟策略执行的回溯测试技术,读者可以在运行推进分析时有限度的了解到量化交易策略实际执行时的种种状态。

㈧ 国内A股个人能做量化交易吗

量化交易说白了,就是把人工的交易策略写成程序,让计算机去分析大大提高了分析效内率,个人容当然可以参与了,如果你自己会写程序那基本不需要什么费用,如果你自己不会写程序,那你想找一个又会编程又懂炒股的人,这笔费用可真不少,这样的人你得给人家多少年薪啊。

㈨ 量化交易是什么意思

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。

阅读全文

与量化交易标准买卖点相关的资料

热点内容
土地抵押融资违规 浏览:288
拉取融资 浏览:464
网上股票交易软件下载 浏览:337
华能融资 浏览:930
四川信托应届生 浏览:966
100元人民币挽多少美元 浏览:969
会稽山黄酒6年特酿价格 浏览:862
认证淘宝就能贷款的口子 浏览:5
劲胜精密股票代码 浏览:123
170泰铢兑多少人民币 浏览:55
中国邮政基金登录 浏览:354
企业贷款综合融资成本 浏览:308
挖财投资2019 浏览:878
梧桐树投资平台骗人 浏览:721
710多少人民币 浏览:967
融资问题现状分析 浏览:806
华信信托地址 浏览:865
单小铺融资 浏览:808
3月21号资金流入前二十名 浏览:577
捡人融资 浏览:548