导航:首页 > 黄金交易 > 频率计指标

频率计指标

发布时间:2021-06-21 16:56:43

1. 简易数字频率计怎么弄

课程设计 简易数字频率计2008-10-18 13:16课题名称:简易数字频率计

主要技术指标和要求:

(1) 被测信号的频率范围100Hz~10kHz

(2) 输入信号为正弦信号或方波信号

(3) 四位数码管显示所测频率,并用发光二极管表示单位

(4) 具有超量程报警功能

【摘 要】在电子系统非常广泛应用领域内,到处可见到处理离散信息的数字电路,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,文章主要阐述了选择单片机作为核心器件,采用模块化布局,设计了一个简易数字频率计的过程。

设计思路

频率计是直接用十进制来显示被测信号频率的一种测量装置,它可以测量正弦波 方波和三角波的频率,利用施密特触发器将输入信号整形为方波,并利用计数器测量1S内脉冲的个数,利用锁存器锁存,稳定显示在数码管上

常用的频率测量方法

(1) 测频法

测频法的基本思想是:对频率为f的周期信号,用一个标准闸门信号对被测信号的重复周期数进行计数,当计数结果为N时,其信号频率为

如图

测频法的测量误差与信号频率有关:信号频率越高误差越小;而信号频率越低,则测量误差越大,因此,测频法适合于对高频信号的测量,测量越高,测量精度也就越高

(2) F/V 与A/D法

这种测量方法是先通过F/V变换,把频率信号转换成电压信号;然后再通过A/D转换把电压信号转换成数字信号,在对数字信号进行计数,从而得到测量信号的频率

根据性能与技术指标的要求,首先需要确定能满足这些指标的频率测量方法,根据上述频率测量原理与方法的讨论,本设计采用测频法

由于测频法的测量误差与信号频率成反比:信号频率越低,测量误差越大,信号频率越高,测量误差越小。用测频发所获得的测量数据,在闸门时间为1S时,不需要进行任何换算,计数器所计数据就是信号频率,另外,在信号频率较低时,可以通过增大闸门时间来提高测量精度

电路设计

用测频发构成的数字频率计的原理框图如图示

(1) 放大整形电路

由二极管及电阻构成的幅度扩展电路和555构成的施密特触发电路构成整形电路,如下图示

二极管D1 D2 及电阻R1R2构成信号幅度扩展电路,当输入信号较小时,限幅器的二极管均截至,不起作用。用555构成的施密特触发器作用是将输入的周期性信号,如正弦波三角波或其他呈周期性变化的波形换成脉冲波形,其周期不变

(2) 时基电路

时基电路的作用是控制计数器的输入脉冲。当标准时间信号到来时,闸门开通,被测信号通过闸门进入计数器计数,当标准脉冲结束时,闸门关闭,计数器无脉冲输入,时基电路可以由555定时器构成的多谐振荡器实现 如下图

产生的方波信号高电平时间长度为1S,低电平时间长度为0.25s。利用公式t1=0.7(R1+R2)

t2=0.7R2C计数参数,参数如上图

(3) 控制电路

控制电路可以由555构成的单稳态电路构成 如下图

逻辑控制电路利用标准时间信号结束后产生的负跳变来产生锁存信号,同时锁存信号经反相又产生清零信号,锁存信号的脉冲宽度由单稳态电路本身的时间常数决定

(4) 计数 锁存 译码 显示电路

计数电路用4个同步十进制加法计数器构成,可以选择同步十进制加法计数器74LS160同步十进制可逆计数器 74LS190或 74LS192 双 BCD码计数器CD4518等集成电路来实现,译码器可采用共阴极显示译码器 74LS48或共阳极显示译码器74LS47,具体根据数码管的型号来确定。锁存器则可选用 8D锁存器74LS373或 74LS273

锁存器的作用是将计数器在1s结束时的计数值进行锁存,使显示器上获得稳定的测量值,当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,从而将计数器的输出值送到锁存器的输出端。正脉冲结束后,输出不在改变

(5) 总电路图

收获与体会:通过本次课程设计,体会到了设计的艰辛,第一部分为课题的初步考虑。通过查资料找线索,提出不同方案,并对各种方案进行比较讨论,选取了最好的方案而且对总框图进行构思和设计第二部分为系统的详细设计。这一部分是最有挑战性的。为了实现各模块的功能而苦苦奋战。经过无数次修改而成功。初步尝到成功的喜悦。增强了进一步设计的信心。第三部分为系统完成下载阶段。这阶段也遇到困难。不过解决起来容易多了。对各种问题有了经验。测试,下载,连线。终于设计初步完成了。

2. 制作简易频率计

课程设计最好自己做一下,因为从里面你会学到很多东西的。
其实你可以用个protel画个图,用51单片机做3个模块,
1.输入的的模块,单片机本身就有计数器,可以用来测量频率。
2.显示模块,这个其实很通用,4个LCD,32个引脚就ok了,写好程序显示就好,定时刷新就好。
不明白为什么用二极管做单位,其实可以直接LCD。
3.所谓超量程报警,就是加多个蜂鸣器,然后在程序里面写多个分析,超过上下限就响,硬件很简单,但是程序要写好。
如果你想简单,可以直接买个实验版,然后就编程,这样也很快,普通的实验板都可以实现这个功能。

3. 频率计清零和保持电路的原理

4.2.3简易数字频率计电路设计数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。一、设计目的1. 了解数字频率计测量频率与测量周期的基本原理;2. 熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。二、设计任务与要求要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为:1.测量范围:1HZ—9.999KHZ,闸门时间1s;10 HZ—99.99KHZ,闸门时间0.1s;100 HZ—999.9KHZ,闸门时间10ms;1 KHZ—9999KHZ,闸门时间1ms;2.显示方式:四位十进制数3. 当被测信号的频率超出测量范围时,报警.三、数字频率计基本原理及电路设计所谓频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为 fx=N/T 。因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。可见数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成,总体结构如图4-2-6:图4-2-6数字频率计原理图从原理图可知,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清“0”脉冲Ⅴ,使计数器每次测量从零开始计数。1.放大整形电路放大整形电路可以采用晶体管 3DGl00和74LS00,其中3DGl00组成放大器将输入频率为fx的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。2.时基电路时基电路的作用是产生标准的时间信号,可以由555组成的振荡器产生,若时间精度要求较高时,可采用晶体振荡器。由555定时器构成的时基电路包括脉冲产生电路和分频电路两部分。(1)555多谐振荡电路产生时基脉冲采用555产生1000HZ振荡脉冲的参考电路如图4-2-7所示。电阻参数可以由振荡频率计算公式f=1.43/((R1+2R2)*C)求得。(2) 分频电路由于本设计中需要1s、0.1s、10ms、1ms四个闸门时间,555振荡器产生1000HZ,周期为1ms的脉冲信号,需经分频才能得到其他三个周期的闸门信号,可采用74LS90分别经过一级、二级、三级10分频得到。图4-2-7 555多谐振荡电路3. 逻辑控制电路在时基信号II结束时产生的负跳变用来产生锁存信号Ⅳ,锁存信号Ⅳ的负跳变又用来产生清“0”信号V。脉冲信号Ⅳ和V可由两个单稳态触发器74LSl23产生,它们的脉冲宽度由电路的时间常数决定。触发脉冲从B端输入时,在触发脉冲的负跳变作用下,输出端Q可获得一正脉冲, Q非端可获得一负脉冲,其波形关系正好满足Ⅳ和V的要求。手动复位开关S按下时,计数器清“ 0 ”。参考电路如图4-2-8 图4-2-8数字频率计逻辑控制电路4.锁存器锁存器的作用是将计数器在闸门时间结束时所计得的数进行锁存,使显示器上能稳定地显示此时计数器的值.闸门时间结束时,逻辑控制电路发出锁存信号Ⅳ,将此时计数器的值送译码显示器。选用8D锁存器74LS273可以完成上述功能.当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,即Q=D。从而将计数器的输出值送到锁存器的输出端。正脉冲结束后,无论D为何值,输出端Q的状态仍保持原来的状态Qn 不变.所以在计数期

4. 频率计的发展史,以及国内外的应用,谢谢!

频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。频率计的应用范围: 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。

电子计数器是一种基础测量仪器,到目前为止已有30多年的发展史。早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量电子计算器的技术水平,决定电子计数器价格高低的主要依据。目前这些基本技术日臻完善,成熟。应用现代技术可以轻松地将电子计数器的测频上限扩展到微波频段。

随着科学技术的发展,用户对电子计数器也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对于中高档产品, 则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。

在测试通讯、微波器件或产品时,常常需要测量 频率,通常这些都 是较复杂的信号,如含有复杂频率成分、调制的或含有未知频率分量的、频率固定的或变化的、纯净的或叠加有干扰的等等。为了能正确地测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。微波计数器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。虽然所有的微波计数器都是用来完成计数任务的,但制造厂家都有各自的一套复杂的计数器的设计、使得不同型号的 计数器性能和价格会有所差别,因此需要根据其附加特性或价格来慎重选择。

对灵敏度和准确度的要求

为了测量微波频率, 频率计必须在测量频率点上有足够的灵敏度,因为有些仪器的实际性能比说明书给 出的指标要好些,这样当测量临界信号时才可能有更多的灵活性。例如,微波计数器说明书给出在20GHz时灵敏度为-25dBm,那么完全可以成功地用来测量该频率点上-30dBm的信号。当然,如果计数器的额定最高频率为18GHz,那么由于计数器电路不能工作在18GHz以上,你甚至不能用它测量在20GHz上0dBm的信号。因此,如果要做精确的测量,一 定要保证被 测信号的频率和幅度在测量仪器的指标范围之内。

说明书上的测试性能指标给出了测量仪器的“准确度”和“分辨率”。准确度指标表明仪器的读数接近实际信号频率的程度;而分辨率指标表明多么小的频率变化可能在仪器上显示出来。假如需要在15GHz有1Hz的分辨率,仪器必须至少显示11位数。高分辨率可以快速测出更小的漂移值和不稳定值,但这时的读数不能完全代表仪器的准确度。

测量仪器的准确度的选择

仪器的频率测量准确度取决于时基。大多数仪器使用的10MHz参考振荡器具有10-7或 10-8的频率准确度和稳定度。高分辨率比高精度更容易实现,因为增加显示位数比制造更稳定的振荡参考源要容易的多。

为了提高仪器的测量准确度和稳定度,可以购买一个具有小型恒温槽的参考振荡器作为时间基准。好的恒温槽温度可以稳定到零点几度,这样就可以保证在外部温度变化时振荡器的频率变化相当小。当然,仪器的固有准确度取决于制造的精度以及校准实验室对时基振荡器的校正;准确度主要取决于晶振的热稳定性,而与老化关系不大。

通过使用铯束频率标准或GPS信号作为一个参考频率源送入整个系统的所有仪器,可最大限度地提高频率测量准确度,这样在测量仪器中就不需要有精确的时基而可以达到10-12到10-14的频率测量准确度,也就是说,可以达到比仪器最高分辨率高得多的频率测量准确度。
可能影响计数器选择和应用的还有另外几个值得考虑的特性,如:采样时间、测量速度和跟踪速度,这些特性可能影响测量结果的准确及对结果的及时处理。
微波计数器的使用
如果要测量的信号中有噪声、 谐波或寄生分量, 尽量不要使用微波计数器。在选择测量仪器之前必须了解待测信号的所有特性, 附非肯定待测信号是纯净(无噪声干扰)、平稳、单一频率成分,否则应该在制订测试方案前用频谱分析仪先观测待测信号中的干扰信号及噪声电平,然后看计数器的性能是否能允许这些干扰并仍能成功地完成频率的测量。例如:当前出现的干扰信号比被测信号至少大6dB时,计数器测得的是这个干扰信号,这就导致了错误的测量结果。 一般来说,对干扰信号和噪声可以使用计数器的附件来抑制。如果被测频率变化小于百分之几,可以考虑在计数器输入端安装一个滤波器,以抑制不需要的信号(图1)。如果需要测量的几个信号的频率值相差很大,可以使用可调带通滤波器或高通、低通滤波器依次测量每一个信号的频率。这样可以避免一直占用频谱分析仪,因为频谱仪的价格可能是那些附件价格的10~20 倍。
如果知道待测信号的大概频率(A),就可以用滤波器抑制已知的干扰信号(B),而在计数器量程之外的其他信号(C)或低电平信号(D)不会对待测信号的频率测量产生干扰。
在某些特殊的测试场合,可能需要其它附件,比如用一个射频放大器来放大低电平的信号,或通过一个外接的混频器来测量超出计数器测量范围的频率,当然,有些计数器能够直接测量100GHz以上的频率。在机动车的防撞雷达和低功率通讯中继站就需要这种性能的频率计来测量。还有些计数器可以测量信号电平、周期、脉宽和脉冲频率,选择这样的计数器可以使测试方案中使用的测试仪器更少。
结束语
由于微电子技术和计算机技术的发展,微波频率计都在不断地进步着,灵敏度不断提高,频率范围不断扩大,功能不断地增加。一些计数器可以测量脉冲参数,并提供类似于频率分析仪的屏幕显示;对这些功能具有不同功能不同规格的众多仪器,我们应该视测试需要正确地选择,以达到最经济和最佳的应用效果。

5. 示波器和频率计的区别在那里呢

示波器计数器频率是使用硬件技术的方式测试频率的,在测试一些没有噪声的信号时非常准确
示波器测量频率使用软件对其显示的波形进行计算,所以对有噪声的波形会准确一些
信号发声器频率是信号发生器自己发出的信号频率
他们的不确定度一般厂家会给出具体指标,没有计算公式,或者说不公布计算公式,这是一个综合参数

6. 电子计数器的主要技术性能

频率计数器最关心的两个指标:采集速度和计数量程;

前者关系到频率最大到多少,后者关系到计数总量够不够用。

如果是通用计数器,比如安捷伦53131A,这种就可以直接在表头上看到有指标参数——225MHz,12位显示;最大计数单位到M(Hz)。

所以知道它可以计量225MHz 的频率信号,以及其最大计数量程是1999999999999M

其他还有些功能,比如运算啦,占空比测量啦,都可以作为考虑的依据

7. 万用表频率计

万用表带频率测量功能的只要在范围内都没问题,因为指标规定了你这个信号频率范围,超过了就会计错。范围内使用也很方便。

8. 什么是频率计

频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。

测量方法:测量频率的方法有很多,按照其工作原理分为无源测频法、比较法、示波器法和计数法等。计数法在实质上属于比较法,其中最常用的方法是电子计数器法。电子计数器是一种最常见、最基本的数字化测量仪器。

基本原理:
频率计最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N时,则被测信号的频率f=N/T(如右图所示)。
在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。

应用范围:
在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。
在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。
在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。
在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。

9. 简易数字频率计的设计

频率测量的方法常用的有测频法和测周法两种。

测频法的基本思想是让计数器在闸门信号的控制下计数1秒时间,计数结果是1秒内被测信号的周期数,即被测信号的频率。若被测信号不是矩形脉冲,则应先变换成同频率的矩形脉冲。测频法的原理框图如图所示。

图中,秒脉冲作为闸门信号,当其为高电平时,计数器计数;低电平时,计数器停止计数。显然,在同样的闸门信号作用下,被测信号的频率越高,测量误差越小。当被测频率一定时,闸门信号高电平的时间越长,测量误差越小。但是闸门信号周期越长,测量的响应时间也越长。

2、当被测信号频率较低时,为保证测量精度,常采用测周法。即先测出被测信号的周期,再换算成频率。测周法的实质是把被测信号作为闸门信号。

在它的高电平的时间内,用一个标准频率的信号源作为计数器的时钟脉冲。若计数结果为N,标准信号频率为f1,则被测信号的周期为:T = T1·N。被测信号的频率为:f = 1/T1·N = f1/N。

利用测周法所产生的最大绝对误差,显然也等于±1个标准信号周期。如果被测信号周期的真值为T真= T1·N,则T测= T1·(N±1)σmax= (f测-f真)/ f真= T真/T测 – 1=±1/(N±1)由上式可知,对于一定的被测信号,标准信号的频率越高,则N的值越大,因而相对误差越小。

3、低频段的测量,鉴于上述困难,对于低频信号,为了达到规定的精度,要采取一些比较特殊的方法。例如,可考虑将被测信号倍频后再用测频法测量。

或将闸门信号展宽。由于倍频电路比较复杂,所以一般采用后一种方法,实际上闸门信号展宽与被测信号倍频在效果上是相同的。

闸门信号展宽比较容易做到,例如采用分频电路就可以实现。若闸门信号高电平时间从1秒展宽到10秒,则相对误差可以按比例下降,但响应时间也增大相同的比例。

4、显示方式:共用右边四个数码管,左三个显示数据,最右端一个显示单位,为0时单位为Hz,为1时单位为Khz

5、代码:

//#include<c8051F330.h>

#include<ZLG7289.h>

#include<init.h>

#define uint unsigned int

uint a,b,c,d;

unsigned long x;

unsigned long count;

unsigned char flag=0;

void Timer0_Init()interrupt 1

{

TH0=(65535-10000)/256;

TL0=(65535-10000)%256;

if(++count==40)

{

count=0;

TR1=0;

x=TH1*256+TL1;

TH1=0;

TL1=0;

TR1=1;

flag=1;

}

}

void show(void)

{if(x>=10&&x<100)

{

a=0;

b=x*10%100;

c=x/10;

d=x%10;

ZLG7289_Download(1,7,0,a);

ZLG7289_Download(1,6,0,b);

ZLG7289_Download(1,5,1,d);

ZLG7289_Download(1,4,0,c);

}

else if(x>=100&&x<1000)

{

a=0;

b=x/100;

c=x%100/10;

d=x%10;

ZLG7289_Download(1,7,0,a);

ZLG7289_Download(1,6,1,d);

ZLG7289_Download(1,5,0,c);

ZLG7289_Download(1,4,0,b);

}

else if(x>=1000&&x<10000)

{

a=x/1000;

b=x%1000/100;

c=x%100/10;

d=1;

ZLG7289_Download(1,7,0,d);

ZLG7289_Download(1,6,0,c);

ZLG7289_Download(1,5,0,b);

ZLG7289_Download(1,4,1,a);

}

}

main(void)

{

system_init();

systemclk_init();

port_init();

ZLG7289_Init(40);

ZLG7289_Reset();

timer_init();

while(1)

{

if(flag==1)

{

show();

flag = 0;

}

}}

#include <C8051F330.h>

#include <port.h>

void system_init()

{

PCA0MD&=~0x40;

}

void systemclk_init()

{

OSCICL=OSCICL+42; //设置内部振荡器为24MHZ

OSCICN|=0x01; //内部振荡器4分频

}

void port_init()

{

P0SKIP=0x00; //跳过P0.0做INT0.P0.1做INT1(P0.6,P0.7模拟输出不跳)

P1SKIP=0x00; //跳过P1.2,P1.3,P1.4

XBR0=0x00; //交叉开关使能UART0

XBR1=0x60; //打开交叉开关

//IT01CF=0x10; //INT0配置在P0.0,INT1配置在P0.1

P0MDIN=0xFF; //数字输入

P1MDIN=0xFF;

P0MDOUT=0xFF; //推挽

P1MDOUT=0xFF;

}

void timer_init()

{

TMOD=0X51;

TH0=(65535-2500)/256;

TL0=(65535-2500)%256;

EA=1;

ET0=1;

TR1=1;

TR0=1;

}

#ifndef __port_H_

#define __port_H_

void system_init(void);

void systemclk_init(void);

void port_init(void);

void timer_init(void);

#endif

10. 谁知道频率计数器如何选择

频率计数器最关心的两个指标:采集速度和计数量程;

前者关系到频率最大到多少,后者关系到计数总量够不够用。

如果是通用计数器,比如安捷伦53131A,这种就可以直接在表头上看到有指标参数——225MHz,12位显示;最大计数单位到M(Hz)。

所以知道它可以计量225MHz 的频率信号,以及其最大计数量程是1999999999999M

其他还有些功能,比如运算啦,占空比测量啦,都可以作为考虑的依据。

阅读全文

与频率计指标相关的资料

热点内容
股份融资 浏览:55
翘然天津资本投资咨询有限公司 浏览:456
融资融券宝典 浏览:29
定期理财规划 浏览:599
恒大集团股票行情 浏览:6
信托信披 浏览:944
大众公用股票分红 浏览:637
宁波银行后期查贷款用途 浏览:545
好好开车融资 浏览:300
融资租赁可行性报告 浏览:2
860日币是多少人民币 浏览:373
房奴如何理财 浏览:803
南昌住房公积金贷款计算器 浏览:427
国盛华兴投资有限公司 浏览:822
工行贵金属挂单四种 浏览:918
主力资金进出散户资金进出指标公式 浏览:880
报雷理财 浏览:898
广信股份股票 浏览:472
小额贷款怎么收账 浏览:798
基金交银蓝筹净值519697 浏览:222