❶ 我同事他通过量化网中的量化交易之中赚了钱,真有这么靠谱吗
确实有,但是也要看数据模型完不完善,数据完不完整,只能说要看量化网上的量化交易的技术如何。
❷ 在投行内部做量化交易与独立出去做量化交易有何不同
这里我们只说量化交易,不讨论量化研究和量化定价这一块的业务。
量化交易是分两个阶段的。第一个阶段是2008年以前,或者说Dodd-Frank法案以前,投行内部林立着各样的很多对冲基金或者类对冲基金的实体,比如Morgan Stanley的PDT(Process Driven Trading)和高盛的Global Alpha,而很多投资银行的自营交易业务也很像对冲基金。在这一阶段,这些类对冲基金的实体和外面的对冲基金是没有啥区别的,业务很类似——赌方向、做部分对冲(Partial Hedging)、跨市场套利,也非常敢于承担风险。
当时在投行内做对冲基金类型的量化交易有着非常大的优势,因为两点——第一是银行有着非常良好的融资渠道,融资成本显著地低于当时的对冲基金,如果你尝试去组建过一个基金,你就知道资金成本对于一个对冲基金的影响多么大——巴菲特这么多年的成功是离不开长期1.6倍的财务杠杆和其低于中央银行存款准备金率的资金渠道的(详细内容参见AQR的论文——Buffet's Alpha)。 炒股需要经常总结,积累,时间长了就什么都会了。为了提升自身炒股经验,新手前期可以私募风云网那个直播平台去学习一下股票知识、操作技巧,对在今后股市中的赢利有一定的帮助。
第二是银行有着一个灰色的信息流——客户的交易记录。这个交易信息,就是今天,也是非常有用的内部消息。几周前Bill Gross从PIMCO离开时,所有投行的Sales都疯了,不停地研究之前PIMCO在自己银行的仓位,然后分析那些债券最有可能最先被清盘,从而给其它客户交易建议。而当年文艺复兴多次更迭合作的投行,就是因为其大奖章基金的交易记录得不到妥善的保密,很多合作银行的自营交易桌跟着交易。
这两个优势造成了当时的自营交易极其暴利,而且管理层为了做大业绩,全力支持明星交易员放大杠杆——而实际上,金融危机期间很多的CEO都是靠着自营交易的暴利业绩从交易大厅升职到管理层的——比如Citi的前任CEO Pandit和摩根斯坦利的前任John Mack。
这也造成了,为什么很多高盛离职的自营交易员在金融危机后,当银行不能做自营交易后出来自立门户开设对冲基金,却完全无法复制当年的业绩——因为他们是因为整个组织的强大而获得超额收益,当失去了资金优势和信息优势后,一切都成为了浮云。
2008年,准确说是2009年后,一切都变了。
首先是政府明令规定自营交易不让干了,于是各种投行旗下的基金,放入资管部的放入资管部(比如Goldman Sachs Global Alpha进入GSAM),独立营业的独立营业(比如PDT从摩根斯坦利分离),要不直接就关门大吉了(比如UBS、德银)。
还有一些硕果仅存的,一般是在股票交易部门,打着对冲为名,通过会计手法,维持着极小的自营规模,这种类似的团队很多投行都有。但是不成气候了,也不会造成任何系统性的风险——当然,各种马路传奇故事也销声匿迹了。
银行内部还有没有量化交易了,其实还有——那就是随着计算机技术进步的自动化做市交易。做市在国内这个概念刚刚出现——因为期权做市商制度的引入。但是在美国这个是从华尔街开始就有的交易体系了。简单来说,就是假设你经营一家买可乐的小店,你有两个主要的交易——一是从总经销商那里拿货,用的价格是Bid,二是分销给街边下象棋和夕阳下奔跑的孩子们,这是Ask。Bid是你的进价,Ask是你的出货价格,Bid一般小于Ask(除非你是搞慈善的)。你持续的维持报出这两个价格,同时根据你的存货来调整报价或者对应报价的数量——比如你的存货太多,大爷不出来下象棋了,你就降低Bid,这样很难进到货了,而保持Ask,等待有人来消耗你的库存。
这个过程就是基本的做市商交易流程,在金融中,由于没有实际的总经销商供货,你的报价(Bid-Ask)是基于你对于对应资产的Fair Price的估计来决定的,通常是你算出来的均衡价格加减一个值构造成Bid-Ask组合。在很长的时间内,这个报价都是靠人来完成,这个过程是枯燥的,而且很容易出错——而对于期权类产品(非线性价格)也很难快速报价。我之前和期权交易员合作过很长时间,他们的工作不一定智力上很难,但是对于人得耐力绝对是一种挑战——因为在开市后他们要注意力高度集中的报价,一quote两quote,一quote两quote,似爪牙,似魔鬼的步伐,报价,报价,在这交易大厅报价... ...
于是,从简单的资产起,从交易所级别开始支持API交易了。什么是简单的资产,就是Vanilla类别的,比如个股、指数、外汇、国债等等。因此投行由于本来就是大量资产的做市商,开始把原来这套过程通过计算机来完成。后面大家发现计算机是完美胜任这项工作的,因为计算机能够高速计算库存来调整报价,还能报出很多复杂的单类型。因此从2000年开始个股、指数开始逐步被自动化做市来包揽,2005年后个股期权自动化做市大热,而2008年后外汇自动化做市也相当成熟了,2010年开始国债自动化做市也在美国兴起——这也是我目前在工作的内容。
那么对冲基金呢,除了传统的量化Alpha,他们难道不能也做这个业务吗?实际上,很多对冲基金的自动化做市业务比投行还要好——比如Citadel,比如KCG。但是区别何在?区别在于两点,第一是很多对冲基金不是专属做市商(Designated market maker)。DMM的特权是其有专属席位——在美国这样高度商业化的国家,DMM也是非常稀有的。原因在于,DMM是有责任的,那就是在各种大型金融危机中,当流动性极差的时候,DMM还是要持续的报价,一quote两quote,一quote两quote,似爪牙,似魔鬼的步伐... ... 在流动很差的时候这是非常危险的,因为大家丢给你的都是不好的资产,比如大跌的时候,都在卖,你的Bid反复被Hit,然后又没人来hit你的Ask,浮动亏损可以非常大。那么DMM的特权呢,DMM可以获得非常高比例的rebate,也就是说,佣金返点非常高。这是对于其承担的义务的回报。
第二就是绝大多是对冲基金不是Broker,也是你一般想买股票不会去找他们报价。在外汇和债券这类市场中,有两级市场,一个是B2C市场,也就是零售市场,里面基本都是Broker-Client,而第二级就是B2B市场,都是Broker-Broker。一般来说,B2B市场的Bid Ask Spread要低一些。一个形象的例子就是,我小时候去批发书的商店买书,一个商店有本习题集没有,于是老板去隔壁家拿了一本,卖给我,最后肯定这个老板要把一部分价格还给隔壁家,我付的价格和老板付给隔壁家的价格就是B2C到B2B市场的差价。
这里投行又耍流氓了,他们有着B2C市场的接入优势,因此只要客户量够大,基本都能把自动化做市实现盈利——因为根据大数法则,一定时间内,买卖双方的交易量应该是均衡的。
那么对冲基金靠什么——靠更好的策略。对冲基金如果要做高频做市的,基本在B2B市场参与,他们不是DMM,但是也自己去报价,然后靠着对于价格走向的准确判断,来调整报价,实现拿到多数对自己有利的单,或者持有更久符合预测方向的单,来达到盈利。这种不是DMM却自发去做做市商的行为,叫做Open Market Making。
Citadel是期权自动化做市的王者,顶峰时期一年的利润可以到1 Billion(2009),而整个市场那年的利润也就是7 Billion左右。因此如果策略逆天,没有客户流,也能靠做市赚钱的。
此外,做市业务之外,对冲基金还多了很多机会。因为很多业务银行做起来不划算——比如商品。考虑一个金融类公司,不能光讨论交易策略,宏观上你一定要思考资金成本等问题,这才是投资之道在投资之外。商品这些之前银行干了很多坏事的业务(详细参加高盛的铜交易和JP的风电交易)都被监管方克以了极高的资本罚金。这是Basel III里面的规定,也就是你拿着1元的股票和1元的监管资产过夜受到的处罚是完全不同的,具体算法参见Basel对于RWA(Risk Weighted Asset)计算的细则。这一系列监管,造成了对冲基金有了大量的新业务——因为投行退出。而大量银行的人才也流向了对冲基金。
现在门径这么清晰,那么投行和对冲基金做量化交易的工作差别就很明显了——投行主要以自动化做市为中心的高频信号、客户流分析、报价博弈论等研究为主。而对冲基金主要是传统的量化Alpha、量化资产配置为主——当然还有公开市场自动化做市了。
希望可以帮助到你,祝投资愉快!
❸ 量化交易和高频交易有什么区别
量化交易是指把操作的信号通过程序化,用计算机控制,可以是高频的,也可以是低频的,和操作频率没有关系。高频交易,也有可能是人工的,只不过,人工太累,所有很多的高频交易都被做成了量化的。
❹ “量化高频交易”是怎样的一种概念如何去简单理解这个交易技术
#银心分享#量化投资是通过综合运用金融、数学和计算机知识,发现市场规律、寻找大概率内事件,发现容投资机会。 “量化投资简单地说,就是先通过电脑来计算:时间、价格、经济指标、市场消息等,当它们达到模型要求时,就自动买卖。”计算机根据每秒数次更新的报价不停计算,确定要不要加仓、减仓,算算用了多少钱,赚了还是亏了,赚了多少或者亏了多少。 以量化投资里面具有代表性的一种模式———统计套利为例:成都市两大菜市场都在卖大白菜,实时监控两个市场的价格,如果发现一个市场大白菜价格为八毛一斤,另一个市场大白菜价格为七毛一斤,两个市场之间的运费是每斤五分,这个时候我就可以在一个市场买入大白菜,拿到另外一个市场去卖掉,每一斤可以赚到五分钱,如果规模大,一天很多次这样做生意,那么累计的利润就很可观。“这就是统计套利基本原理的简化案例。”他说。
❺ 高频交易和量化交易到底有什么区别
从历史上看,很多高频交易公司的创始人都是交易员出身,原来就从事衍生品的做市、套利等业务。一开始这些工作并不需要多高深的知识。随着计算机技术的发展,交易的自动化程度和频率也逐渐提高,这些公司逐渐聘请一些数学、统计、计算机背景较强的人员加入以适应形势的发展。当然,这个过程也出现了一些分化,有的公司还是保留了交易员在公司的主导地位,并且始终未放弃人工交易,最终形成了人机结合的半自动交易;而另外一些公司对新鲜技术的接受程度更高一些,往往采取全自动的交易模式。事实上,也没有证据表明全自动交易的公司就比半自动交易的公司更为优越,到目前为止,也只能说是各有利弊。
人工交易的最大弊端在于手动下单的地方离交易所较远,在行情剧变的时候往往抢不到单。在这一点上,全自动交易的公司可以通过托管机房来最大程度减少信号传输的时间,不过自动化交易往往因为程序过于复杂,加上很多公司人员流动较大,在程序的维护上会出现一些失误,最终程序出错酿成大祸,比如著名的骑士资本。
至于过度拟合无法抵御黑天鹅事件,那是人工交易和自动交易都无法避免的问题。一般来说,Getco、Jane Street、SIG、Virtu Financial等是半自动交易,Tower Research、Hudson River Trading、Jump Trading等是全自动交易。
量化投资公司跟高频交易公司则有很大的不同。首先,美国的量化投资公司基本上都是量化背景极强的人创办的,比如说文艺复兴的创始人西蒙斯是数学家出身,DE Shaw的创始人David Shaw是计算机教授出身,AQR的创始人Cliff Asness是金融学家出身,而高频交易公司则更多是传统交易员创办的;其次,量化投资一般依赖于复杂的模型,而高频交易一般依赖于运行高效的代码。
量化投资公司的持仓时间往往达到1—2个星期,要预测这么长时间的价格趋势需要处理的信息自然非常庞大,模型也因此更为复杂,对程序的运行速度反而没那么敏感;高频交易处理信息的时间极短(微秒或毫秒级),不可能分析很多的信息,因此模型也趋于简单,竞争优势更多依靠代码运行的效率,很多人甚至直接在硬件上写程序;而最后,量化投资的资金容量可达几百亿美元,而高频交易公司往往只有几千万至几亿美元,但由于高频交易的策略表现远比量化投资稳定,如Virtu Financial交易1238天只亏1天,因此一般都是自营交易,而量化投资基金一般来说都是帮客户投资。
❻ 高频交易和量化交易有何不同
高频交易和量化交易有3点不同:
一、两者的概述不同:
1、高频交易的概述:指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易。
2、量化交易的概述:指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略。
二、两者的作用不同:
1、高频交易的作用:这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。
2、量化交易的作用:极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
三、两者的特点不同:
1、高频交易的特点:
(1)高频交易都是由计算机自动完成的程序化交易;
(2)高频交易的交易量巨大;
(3)高频交易的持仓时间很短,日内交易次数很多;
(4)高频交易每笔收益率很低,但是总体收益稳定。
2、量化交易的特点:
(1)纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
(2)系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
(3)套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
(4)概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
❼ 谈谈量化交易的一些“深坑”
量化投资中的一些坑就是反复振荡行情中手续费变很多了。
❽ 为什么不建议轻易转行做量化玩高频
高频交易是指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易,比如,某种证券买入价和卖出价差价的微小变化,或者某只股票在不同交易所之间的微小价差。这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”(server farms)安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。
❾ 在中国,做量化交易一天的工作是怎样的
做量化交易一天的工作:
8:00~:00: 打开交易策略,设置一些运营参数
9:00~9:30: 观察策略运转,确保没有问题
9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法
15:30~17:00: 分析交易记录, 确定第二天的交易计划
17:00~18:00: 运动
岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;
岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;
理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);
有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;
(9)高频量化交易离职扩展阅读
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,
极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。