⑴ 量化交易是什么意思
量化交易就是利用数学、统计学、信息技术的量化投资方法来管理投资组版合。简单的讲可权以分为策略构思、建立模型、数据回测、调优再回测、交易跟随这5个步骤。
股票量化投资模型主要分为两大块:风险模型和多因子选股模型,分别用于控制风险和提高收益。风险模型中纳入了行业、市值和风格因子,行业不偏不倚,市值不偏大小,风格兼顾长短期。多因子模型建立在风险模型之上,涵盖七大类筛选因子,覆盖情绪、动量、质量、估值等多类型因子以及大数据投资因子。
的确,要自己做出一个量化策略,肯定需要对一些基本的指标(因子)有清晰的理解,拿你说的基本面来说,比如市盈率(PE)这个因子,PE越高说明股票的估值越高,买入后风险就高;PE越低说明股票估值越被低估,买入后上涨的机会就越大。所以,我们就可以简单的得出一个低PE的量化策略,当然这种单因子策略存在着很大的局限性,真正在做策略的时候我们还需求结合其他的因子,这样做出来的策略的回测结果会更加的理想,实盘的赢率也就更大了。
如果你只是个普通的散户,想在未来的交易中采用量化交易体系,那还是很有必要系统性的学习一下的。
⑵ 高频交易和量化交易有何不同
高频交易和量化交易有3点不同:
一、两者的概述不同:
1、高频交易的概述:指从那些人们无法利用的极为短暂的市场变化中寻求获利的计算机化交易。
2、量化交易的概述:指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略。
二、两者的作用不同:
1、高频交易的作用:这种交易的速度如此之快,以至于有些交易机构将自己的“服务器群组”安置到了离交易所的计算机很近的地方,以缩短交易指令通过光缆以光速旅行的距离。
2、量化交易的作用:极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
三、两者的特点不同:
1、高频交易的特点:
(1)高频交易都是由计算机自动完成的程序化交易;
(2)高频交易的交易量巨大;
(3)高频交易的持仓时间很短,日内交易次数很多;
(4)高频交易每笔收益率很低,但是总体收益稳定。
2、量化交易的特点:
(1)纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
(2)系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。
(3)套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
(4)概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
⑶ 量化交易可以实现高频吗
你好
量化交易和高频交易有什么区别?
很多人对于量化交易和高频交易分不清,经常混淆,简单地介绍他们的区别。
量化交易是指投资者利用计算机技术、金融工程建模等手段将自己的金融操作方式,用很明确的方式去定义和描述,用以协助投资者进行投资决策,并且严格的按照所设定的规则去执行交易策略(买、卖)的交易方式。简而言之,量化交易是以定量化方法进行投资的各种技术综合。而在现实的应用中,量化交易往往与基本面投资、技术分析有机结合,帮助投资者制定决策、减少执行成本、进行套利、风险对冲和帮助做市商实现报价的功能。按照数学模型的理念和对计算机技术的利用方式,量化交易方式可以进一步细分为自动化交易(Automatic Trading)、数量化投资(Quantitative Investment)、程序化交易(Program Trading)、算法交易(Algorithm Trading)、以及高频交易(High Frequency Trading)。这五种量化交易方式侧重点各有不同,是量化交易技术发展到不同程度的产物。但是在实际应用中,五种量化交易方式的名词经常被交叉使用。
自动化交易自动化交易,是指将技术分析投资方式固化成计算机可以理解的模型、技术指标,计算机程序根据市场变化自动生成投资决策并付诸执行的交易方式。简而言之,自动化交易是技术分析投资方式的自动化。自动化交易可以避免投资人的心理变化和情绪波动,严格执行既定策略,是最基本的量化交易方式,在外汇交易和期货交易领域应用很广。数量化投资数量化投资,是指利用计算机分析宏观经济、行业、以及公司的基本面数据,选择投资组合的资产配置,并通过数学模型预测组合未来变化的数量化交易方式。简而言之,数量化投资是基本面分析投资的自动化。数量化投资可以帮助投资人在越来越多的信息中选择实质性关键信息,并转化成投资决策,在股票投资领域应用广泛。量子复利的框架体系内的不同风格的量化策略,便属于数量化投资这个范畴,即平时常说的量化投资(Quantitative Investment)。算法交易算法交易,是指把一个指定交易量的买入或者卖出指令输入到计算机模型,由计算机模型根据特定目标自动产生执行指令的时机和方式。订单执行的目标基于价格、时间或者某个基准。为降低冲击成本,避免惊动市场,算法交易采用一些计算机模型,将一个大额交易拆分成若干个小额交易,以此来减少对市场价格造成冲击。算法交易有时被称为黑箱交易。算法交易的概念是交易执行精细化发展的结果,算法交易侧重于投资策略的执行,而自动化交易和数量化投资的概念着重于投资决策。因此算法交易可以与自动化交易和数量化投资配合使用。近年来,除了信息技术是的交易速度不断加快之外,交易平台日趋多元化也使得高频交易成为可能。与高频交易相伴随的是闪电交易(Flash Trading),闪电交易是美国市场上交易所为高频交易商提供的一种特殊服务,是指股票交易传达到公众的约三十毫秒前,先显示给订用有关服务的交易员。三十毫秒的时间,对于手动交易者而言相差不大,但是对于高频交易而言,三十毫秒的时间足以完成一笔交易行为。2009年9月,美国证监会因为闪电交易明显有失公平,停止了所有交易所的闪电交易服务。
⑷ 博士去搞量化投资,金融建模怎么样
很有前途,这个领域需要博士的水平
⑸ 2.什么是量化交易
量化交易有专门的量化交易系统,是全自动化的交易。
简单的说,是把相关投资模型、投资策略,以计算机程序的形式,放在量化交易系统中,当股市触发了相关条件后,电脑系统会按照预先设定好的策略进行自动买卖。
优点是:1、不存在人性的弱点,纪律性大幅提高。2、人靠眼睛盯盘精力有限,量化策略设定好后,系统可以全方位自动盯盘,可以发现一些人为难以发现的机会,进行无风险或低风险套利操作,交易效率大幅提高。3、可以通过概率取胜。手工统计大数据工作量太大,而通过量化系统则可以很容易实现,系统可以在历史数据中挖掘有望重复的规律并加以利用,以概率取胜。
缺点是:1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。2、网络中断,硬件故障也可能对量化交易产生影响。3、同质模型产生竞争交易现象导致的风险。4、针对专业投资者,有些风险完全可以利用以往操作经验以及盘感进行提前规避,而量化交易则无法办到。
⑹ 量化交易是什么
量化交易指使用数学模型取代人为的主观性判断,利用计算机技术从庞大的历史回数据中甄选能为企业答带来超额收益的大概率事件以制定有利于企业发展的策略。
从18世纪开始,金融投资的先驱已经开始探索各种不同的投资方法,经过多年的进化,已经尝试了从价值分析、风险套利到日间交易等不同的方向。那么,在目前不断变化的中国资本市场,什么投资方向迫切需要我们深入探索。笔者认为,量化投资作为中国市场的新兴投资方法,正在引来越来越多的关注。
中国投资者对数量化投资,虽不陌生,却仍懵懂。量化投资理论是借助现代统计学和数学的方法,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可持续的、稳定且高于平均的超额回报。
本条内容来源于:中国法律出版社《法律生活常识全知道系列丛书》
⑺ 3分钟了解深度学习跟量化交易是什么关系
机器学习怎样应用于量化交易(一)
曾有朋友问过,国内现在量化领域机器学习应用的少,是否因为效果不如简单的策略。其实,把机器学习应用在量化交易上始终面临着两难,却并不是无解的两难。很多时候并不是机器学习不work,而是真正懂如何用正确科学的统计思维使用Machine Learning的人才太少。机器学习涉及到特征选择、特征工程、模型选择、数据预处理、结果的验证和分析等一整套建模流程,广义角度来说就不单单是模型选择的问题。所以,如果认为“用支持向量机成功预测股票涨跌” 这样的研究,就是把机器学习应用于量化交易,这种狭义的认识无疑是买椟还珠,对机器学习领域散落遍地的珍珠视而不见。如果把机器学习的崛起放在历史进程中考量,无非就是趋势的延续:现在,可通过系统的数据分析证实过去模糊不定的经验,机器学习算法将未曾被察觉的规律得以浮现纸面。在我看来,未来的发展概有两个方向:1.针对量化交易的统计学习算法被提出,使其适合于噪声大,分布不稳定的金融数据分析;2.对于机器学习的热情回归理性,从工具为导向回归到问题为导向。针对如何以问题为导向,在机器学习算法中挑选合适的工具,分享一些思路。1.多因子模型的因子权重计算当我们在构建多因子模型且已经选定了一系列因子之后,要如何根据不同的市场情况调整各个因子的权重呢?在以往的研究中发现,与其它算法相比较,随机森林算法对于存在非线性、噪音和自变量共线性的训练集的分析结果更出色。所以,目前在多因子模型的权重上,采用当期收益率对上期因子进行随机森林回归分析,以确定下一期多因子模型的因子权重。2.缺失值处理处理缺失值在金融的量化分析中是个无可避免的问题。选取合理的缺失值处理方法,依赖于数据本身的特点、数据缺失的情况、其对应的经济学意义,以及我们需要使用数据进行何种计算。在尝试构建多因子模型时,我们选择了两种缺失值替换方法:(1)采用期望最大化算法 来用同一变量的已知数据对缺失值进行极大似然估计。(2)把模型中包含的所有因子作为特征变量,并赋予其相同的权重,再采用机器学习中的K-近邻算法来寻找最相似的标的,保证缺失值替换后,不会强化一部分因子的影响力。其实在量化领域,机器学习解决着线性模型天生的缺陷或弊端,所以还是有着很深的介入的。除去凸优化、降维(提取市场特征)等领域的应用,目前“非动态性”和“非线性”是两个重要的弊端。金融关系之间并非静态,很多时候也不是线性的。统计学习的优势此时就会体现出来,它们能够迅速地适应市场,或者用一种更“准确的”方式来描述市场。在国内,机器学习在量化内应用跟领域有很大的关系,跟频率也有很大的关系。比如,CTA的运用可能就要多于股票,它处理数据的维度要远小于股票,获取市场的长度和动态又强于股票。股票市场的momentum要弱于期货市场的momentum,它的趋势与股票相比更明显和低噪声。这些特征对于机器学习发挥作用都更加有利。很可能国内一些交易执行算法的设计上就借鉴了机器学习。我们可以通过学习订单薄特征,对下一期盘口变化做一些概率上的预测,经过一定样本的训练之后,可以显著地提升算法表现。而我仍谨慎看好深度学习等机器学习方法的原因在于,在认识市场上,现行的大部分方法与这些方法并不在一个维度上,这个优势让它们与其他方法相比,捕捉到更多的收益。也就是说,一个新的认识市场的角度才能带来alpha。
⑻ 股票量化交易是什么
量化交易个以前的股票交易本质没有区别,只是提高了工作效率,
量化交版易分为量化分析和权程序化自动交易
量化分析,如果你是普通散户我现在问几个问题,第一MACD指标默认参数下,在三千多只股票日k上近两年那只收益最好,那只亏损最大。这要人工多大的工作量,如果会写程序代码,几行代码就解决了。在继续如果调换MACD参数能否增加收益用那几个参数是最优组合,这要是人工基本无法完成,计算量太大了,但计算机就很快完成了参数优化。
而且量化分析不是技术分析,例如你问一个价值投资者,三千多家上市公司,你知道有多少家连续10年都没亏损过吗,同样几行代码就知道。
假如你听了一个老师的讲课,说他的牛x战法,普散户听了你只能价单试试,但量化分析我可以在不同市场不同时间周期,不同品种,进行回测严重,优化。这些就是量化分析。
程序化自动交易。
就是利用计算机技术自动交易,这对于散户比较难实现,简单的用第三方然间写几个交易策略可以实现自动交易。
但当你交易上你就会发现,滑点问题,你的速度不够快,需要专线网络,需要底层语言的交易系统,高速的硬件设备。
但散户还是必须要进行量化学习因为这样才能更好的帮助你分析。
下图就是最简单的趋势指标
⑼ 什么是量化交易
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历内史数据中海选能带来超额收益的多容种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
⑽ 金融工程,量化投资学什么软件好Python还是Matlab
这真的非常难说。。总的来看美 国大部分用python,国 内可能用matlab的比较多(因为盗内版什么容的问题呵呵)。我个人是觉得python有更好的灵活性,比如可以和C链接等等,很多美国的hedge fund等公司都在从matlab转到python。matlab的好处是:收钱的东西质量有保证。所以matlab在optimization等方面的toolbox写得非常棒!总的来说就是简单好用。问题就是它的syntax非常恶心(这点和R类似。。)。另外速度比较慢(当然R更慢)。。我个人是比较喜欢python多一点,但是很多时候搞量化分析偷懒就会用matlab和R,因为很多东西都是现成的。。