❶ 求eviews结果分析。想问下回归结果显著吗这两个变量能解释解释变量吗最好能解释下主要检测指标的意思
p小于0.05就是显著
找不到p,那就直接让人帮你做,你基础太差
我经常帮别人做这类的数据分析的
❷ 回归分析的结果怎么看
首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<0.05一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。
回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告
然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验
最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,标准化的情况下R也是自变量和因变量的相关
❸ 回归分析因变量有多个指标怎么办
analysis----general linear model -------multivariate
是对多自变量、多因变量进行线性分析模型的
另外看一下 是否该用典则相关的分析方法,多自变量与多因变量
❹ spss回归分析结果怎么得出回归结果
可以使用在线spss平台SPSSAU进行分析,结果比较容易解读。
首先要F检验,如果F值右上角有*号,说明回归分析通过F检验,即说明这个回归分析有意义可以做。然后通常需要看以下几个指标:
R2代表回归方程模型拟合的好坏。同时VIF值代表多重共线性,所有的VIF值均需要小于10,相对严格的标准是小于5。
接着分析具体X对Y的影响关系,在说明已经有影响关系的前提下,具体是正向或是负向影响关系,则是通过“非标准化系数”或者“标准化系数”进行判断。
可以直接使用在线SPSS分析软件SPSSAU的回归分析,生成智能化文字分析结果及标准格式数据,不用单独整理。
❺ 用SPSS做多元回归分析得出的指标结果怎么分析啊
表一的r值是复相关系数,r方是决定系数,r方表示你的模型可以解释百分之多少的你的因变量,比如你的例子里就是可以解释你的因变量的百分之八十。很高了。表二的sig是指你的回归可不可信,你的sig是0。000,说明在0.01的水平上你的模型显著回归,方程具有统计学意义。表三的sig值表示各个变量在方程中是否和因变量有线性关系,sig越大,统计意义越不显著,你的都小于0.05,从回归意义上说,你这个模型还蛮好的。vif是检验多重共线性的,你的vif有一点大,说明多重共线性比较明显,可以用岭回归或者主成分回归消除共线性。你要是愿意改小,应该也没关系。
ppv课,大数据培训专家,随时随地为你充电,来ppv看看学习视频,助你成就职场之路。更有精品学习心得和你分享哦。
❻ spss回归分析结果图是什么意思
❼ SPSS中回归分析结果解释,不懂怎么看
对模型整体情况进行分析:包括模型拟合情况(R²),是否通过F检验等。
前面的几个表是回归分析的结果,主要看系数0.516,表示自变量增加一个单位,因变量平均增加0.516个单位。后面的sig值小于0.05,说明系数和0的差别显著。
B,看模型系数,然后看B后面的SIG,发现公司道德变量不显著;再看R2,看模型拟合度,可以看出,模型拟合效果很差;多元回归模型还要看方差分析,发现模型整体有效。
Stepwise Regression逐步回归
在处理多个自变量时,可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量。
以上内容参考:网络-回归分析
❽ SPSS回归分析结果该怎么解释,越详细越好
对模型整体情况进行分析:包括模型拟合情况(R²),是否通过F检验等。
回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告。
分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。
回归分析研究的主要问题是:
(1)确定Y与X间的定量关系表达式,这种表达式称为回归方程;
(2)对求得的回归方程的可信度进行检验;
(3)判断自变量X对因变量Y有无影响;
(4)利用所求得的回归方程进行预测和控制。
以上内容参考:网络-回归分析
❾ 回归模型的几个评价指标
回归模型的几个评价指标
对于回归模型效果的判断指标经过了几个过程,从SSE到R-square再到Ajusted R-square, 是一个完善的过程:
SSE(误差平方和):The sum of squares e to errorR-square(决定系数):Coefficient of determinationAdjusted R-square:Degree-of-freedom adjusted coefficient of determination下面我对以上几个名词进行详细的解释下,相信能给大家带来一定的帮助!!一、SSE(误差平方和)
计算公式如下:
同样的数据集的情况下,SSE越小,误差越小,模型效果越好
缺点:
SSE数值大小本身没有意义,随着样本增加,SSE必然增加,也就是说,不同的数据集的情况下,SSE比较没有意义
二、R-square(决定系数)
数学理解:分母理解为原始数据的离散程度,分子为预测数据和原始数据的误差,二者相除可以消除原始数据离散程度的影响
其实“决定系数”是通过数据的变化来表征一个拟合的好坏。
理论上取值范围(-∞,1], 正常取值范围为[0 1] ------实际操作中通常会选择拟合较好的曲线计算R?,因此很少出现-∞
越接近1,表明方程的变量对y的解释能力越强,这个模型对数据拟合的也较好越接近0,表明模型拟合的越差
经验值:>0.4, 拟合效果好
缺点:
数据集的样本越大,R?越大,因此,不同数据集的模型结果比较会有一定的误差
三、Adjusted R-Square (校正决定系数)
n为样本数量,p为特征数量
消除了样本数量和特征数量的影响
❿ excel回归分析中的指标代表什么意义
a表示截距,b表示直线的斜率,e是误差项。
线性回归通常是人们在学习预测模型时首选的技术之一。在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
多元线性回归可表示为Y=a+b1*X +b2*X2+ e,其中a表示截距,b表示直线的斜率,e是误差项。多元线性回归可以根据给定的预测变量(s)来预测目标变量的值。
回归分析的步骤如下:
1、根据自变量与因变量的现有数据以及关系,初步设定回归方程;
2、求出合理的回归系数;
3、进行相关性检验,确定相关系数;
4、在符合相关性要求后,即可根据已得的回归方程与具体条件相结合,来确定事物的未来状况,并计算预测值的置信区间。