『壹』 做量化交易一般用什么软件
需要懂一些数学模型,比如统计分析、人工智能算法之类的,他的本质是利用数学专模型分析数据属潜在的规律寻找交易机会,并利用计算机程序来搜寻交易时机以及完成自动化交易。并没有现成的软件可以做这个,因为它需要一个搭建一个专业的平台,这不是一个人可以完成的。
国内有一些软件,比如大智慧提供数量分析,还有一些软件提供股票、期货的程序化交易。但是实际上这并不是真正意义上的量化交易。事实上,做一款纯粹的适合个人投资者的量化投资软件,难度是非常大的,因为量化策略并不想传统的基本面、技术面那样存在已有既定的必然规律。他需要跨越多学科,多领域去挖掘数据的规律,然后利用得出的规律进行交易。但是不同时间、空间的数据的潜在规律并不一致,所以对量化过程进行标准化是一件很难完成的事情。
如果是计算机或者数学专业的人士,可以考虑使用C、C++、SQL等语言,其他的可以使用MATLAB/SAS 等软件。不管是哪一种软件,要实现量化交易,肯定是需要一定的建模基础和编程基础的,其中最重要的东西是数学能力。
『贰』 如何开发量化投资模型
4.如何进行量化投资
一个量化投资的交易系统主要包括三个部分,阿尔法模型、风险模型和交易成本模型。
阿尔法模型旨在预测宽客所考虑金融产品的未来趋势;
风险模型旨在帮助宽客投资不太能带来收益但会造成损失的敞口规模;
交易成本模型用于帮助确定从目前的投资组合到新的投资组合的交易成本。
目前对于量化交易的研究重点大都集中在对阿尔法模型的研究上。
阿尔法模型
阿尔法模型是量化交易系统的第一个重要组成部分,主要是为了寻找盈利机会。
阿尔法是希腊字母α的音译,常用于量化表述投资者的盈利能力或投资者得到的与市场波动无关的回报。
阿尔法模型分为:
趋势形、回复型、技术情绪型、价值型/收益型、成长型和品质型
趋势型和均值回复型交易策略都依赖价格数据;纯技术情绪型的策略比较少见通常都只作为一个辅助因子;而价值型/收益型、成长型和品质型策略都基于基本面数据
趋势跟随策略
趋势跟随策略是基于以下基本的假定:在一定时间内市场通常朝着同一方向变化,据此对市场趋势做出判断就可以作为制定交易策略的依据。常见于期货市场,最常用移动平均线交叉来定义趋势。
均值回复策略
均值回复策略的基本理论认为,价格围绕其价值中枢而上下波动,判断出这个中枢以及波动的方向便足以捕捉到交易机会。统计套利是用的最多的均值回复策略,认为价格出现背离类似股票的价值终究会缩小到合理的区间范围。
技术情绪型策略
这一类策略没有明确的经济理论支撑,主要通过追踪投资者情绪相关指标来判断预期回报,如交易价格、交易量以及波动性指标等。比如观察期权市场的认沽认购量和隐含波动率做现货的择时,再者就是高频交易通过限价指令簿的形态来判断近期市场情绪。
价值型/收益型策略
价值型策略主要用于股票交易。这类策略认为市场倾向于高估高风险资产的风险,而低估低风险资产的风险。因此,在适当的时间买入高风险资产和卖出低风险资产,就可以获得收益。常用的指标有PE(市盈率)、PB(市净率)等,常应用于股票多空。
成长型策略
成长型策略试图通过对所考虑资产以往的增长水平进而对未来的走势进行预测。他认为价格上涨通常都是存在趋势的,价格上涨最快的产品通常比同类产品更具有优势,他要求投资者能尽早判断公司的股价处于增长期,从而捕捉到公司的股价未来更大的上涨幅度。宏观上常见于外汇市场,例如持有经济迅速增长的国家的外汇,这些国家的利率比经济增长缓慢或处于复苏期的经济体要高;股票市场通常用EPS等指标度量。
品质型策略
这类策略的支持者认为,在其他条件相同的条件下最好买入或持有高品质的产品而做空或减少持有低品质的资产。这类策略比较看重资金的安全,受宏观市场影响比较大,常用的指标有杠杆比率、收入波动比、管理团队水平和欺诈风险。
不管是什么类型的策略最终受益都体现在交易中关于买卖时机的把握和持有头寸选择的技巧。
https://uqer.io/community/list 这个社区里面有很多关于量化的策略,也有很多牛人,可以和他们多讨论讨论的。
『叁』 在中国,做量化交易一天的工作是怎样的
做量化交易一天的工作:
8:00~:00: 打开交易策略,设置一些运营参数
9:00~9:30: 观察策略运转,确保没有问题
9:30~15:30: 解决已有策略的问题并研究新策略,测试新想法
15:30~17:00: 分析交易记录, 确定第二天的交易计划
17:00~18:00: 运动
岗位职责:
分析金融市场(期货、股票等)数据,寻找可利用的机会;开发与维护量化交易策略;提供机器学习/数据挖掘相应的技术支持;
岗位要求:
1.熟练计算机编程能力,熟练掌握至少一门编程语言,python优先;
理工科背景,具有良好的数理统计、数据挖掘等相关知识储备,熟悉机器学习方法(分析科学问题和相应数据,建立模型和方法,验证模型和方法,应用模型和方法并分析结果,改进模型和方法);
有处理分析大量数据的经验,并能熟练选择和应用数据挖掘和机器学习方法解决科研和工作中的实际问题;良好的自我学习和快速 学习能力,有工作激情,喜欢金融行业;两年及以上实验室研究经验或研发类工作经验优先;
(3)量化交易投资公司开发扩展阅读
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,
极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。
『肆』 量化交易公司如何赚钱的
量化交易公司赚钱分为投资收益和卖策略赚钱两方面,但是很多公司也是亏损的。
『伍』 量化投资用什么编程语言研发策略好呢
么以下我就以程序语言的角度来回答
当然如果已经会了某些语言,那你可以使用熟悉的语言去找版网上的学习资源权会比较快
如果没有特别熟悉的语言,或者是愿意多学一种非常好用的语言
我的建议是学习Python
我从以下几点来分别说明
平台资源
国内外使用Python做云端回测以及运算的免费平台相当的多,例如有 宽客在线,发明者量化,优矿, 等等不胜枚举,可以使用平台的支持以及社区的互相帮助来学习
容易学习
综合以上所说,"目前的环境底下" 我推荐Python.(推荐直接下载 Anaconda的集成开发环境)
『陆』 量化投资模型如何开发的
量化的模型开发大致分为以下几个环节:
①数据处理,看你用什么工具,R还是内Matlab还是python,或者是c++,最容好是工具本身的格式,这样速度会快的多,比如Rdata,或matlab的mat格式,或者python的npy格式,或者c++的二进制格式,还有就是你要用什么数据,分钟数据,切片数据,还是tick数据,根据你的需求不同进行处理。
②指标建立,这个工作可以看成问题的关键,如何建立指标,你的思想是什么,都来源于此,举个简单的均线指标,matlab,就是ma=movavg(data,length)
③模型回测,据我理解就是一个大循环:
if time>9. && time<15 && close(i)>ma(i) && p!=1
buy
else
sell
if p==1 && 止损条件
平仓
等等
④计算收益
然后根据收益,夏普比率等,改条件,重复上面的工作。
总结:
开发模型的步骤一般是:数据处理、寻找因子、回测验证、实盘模拟、风险归因。
备注:
数据处理:去极值、标准化、中性化;数据预处理。
寻找因子:寻找Alpha、寻找收益波动比因子、另外优矿上提供了近400个因子因子可以自己验证。
『柒』 怎么开一家量化投资公司
有一个伟大的人物,“量化投资之王”詹姆斯·西蒙斯,他给我们开了一个好头,想要开一家量化投资公司,当然不是一件小事情,需要选择的品种必须流动性强,符合模型要求等等,找到一些适合自己的必备条件,才能支撑住一家公司。
开公司本身就是有风险的,尤其是量化公司,做到思前顾后的考虑,全身心投入,公司运营模式,发展前景考虑周全,这样成功也就指日可待!
『捌』 量化交易程序开发是做什么的
量化交易是利用计算机程序语言编写程序来实现,分析行情走势,分析公司专基本面,分属析经济数据,也可以实现自动化交易,举个简单例子,以前的价值投资者投资股票调研,你需要实地考察,现在很简单,我投资某上市公司,想调用它的产品,我只需要检测跟这产品有关的活跃论坛,群,几大网络销售平台的销量评价,就能获得一手调用数据了。量化交易比普通际交易者的优势就在于,他的分析效率高,你问一个主观交易者MACD指标在三千多只股票里哪只收益最高,那只收益最差,最优参数是多少,主观交易者会告诉你指标不能信那东西都是主力骗人的。因为他不可能知道人工回测三千多只股票的MACD指标一个金叉一个死叉的算还没优化参数呢,人都得累死。但你问量化交易者他几行代码,计算机跑一会,三千多只股票就回策完了。并告诉你历史上那些参数是最优的哪些是最差的。
量化交易还有很多优势,但量化交易本质上和主观交易没区别,只是效率大大提高,交易的策略还是以人的思维为主导地位的。目前机器学习还不能自己独立交易,计算机都是按照人设计好的策略,来执行交易指令的。
『玖』 什么是量化交易,未来前景如何知道的讲讲。
量化交易,有时候也称自动化交易,是指以先进的数学模型替代人为的主观判断,避免在专市场极属度狂热或悲观的情况下做出非理性的投资决策。
在股票市场上,量化交易早不是什么新闻,在国外,七成的交易都是通过计算机决策的,在国内这个数字也接近五成。
过去的股票市场都是靠交易员手动敲键盘来操作的,难免一失手成千古恨,这种行为被戏称为“胖手指”,相比之下,量化交易则如同点石成金的“仙人指”。量化里最美的童话就是“旱涝保收”,牛市也好,熊市也罢,都能大赚特赚。
量化交易的优势:1. 严格的纪律性 2. 完备的系统性 3. 妥善运用套利的思想 4. 靠概率取胜
量化交易的风险性:首先是一二级市场“级差”风险,其次是交易员操作风险,最后是系统软件的风险。
满意请采纳答案,有不明白的可以继续提问。
『拾』 我做了一款线下量化交易系统,怎么寻找投资开发成线上,类似于果仁网的平台呢
你可以先自己坐起来,看效益怎么样的,这样才可以为你推荐的啊