导航:首页 > 黄金交易 > 互联网金融交易数据分析

互联网金融交易数据分析

发布时间:2022-09-18 05:13:27

互联网金融数据分析这个工作还要保密吗

当然需要保密,涉及到数据分析都应该保密

㈡ 互联网时代的客户数据分析与精准营销

互联网时代的客户数据分析与精准营销
随着互联网金融和大数据时代的到来,银行在IT建设、数据采集方面都投入了大量的人力、物力和财力,CRM系统已普遍建立,基础建设初步完成。然而从整体来说,中国银行业由于在数据分析(analytics)领域经验的缺乏,战略上误将此项工作狭义化为IT工作,数据与客户仍然是隔离的,数据应用主要集中在后端,数据文化尚未形成,数据分析手段仍然比较原始,实际投入产出比不高。
单从客户细分而言,几乎所有银行都在做客户群分层工作,有的银行只是粗略分层,有的银行根据风险与客户生命周期进行客户分层,但几乎很少有银行能够从数据挖掘与分析角度精细化地进行客户细分与决策,而真正懂得如何科学运用数据与模型进行客户行为分析预判,特别对流失客户的分析与预判,实施精准营销的更是寥寥无几,这必然导致银行在以客户为中心的转型发展过程中,会遇到一系列与客户发展目标相关的瓶颈,诸如我们常常听到的如下头疼问题:
不知道哪些客群应该重视、哪些应该放弃;
客户流失率很高却不知其原因,不知道如何进行客户流失分析与预判;
不知道如何进行客户预见性营销与精准营销;
不知道如何通过数据分析与模型工具促发客户;
……
那么,如何解决以上问题呢?我们认为,银行首先必须要在客户数据分析这项重要工作里投入必要的资源、人力和物力,并愿意采用专业科学的管理方法与指导,从而使数据分析能够为银行带来实质性的效益。本文我们将通过两个案例的分享助您领悟这项工作的实施要领。
[案例一]客户数据清理分析与分类
首先,将客户数据按照逻辑关系、层层深入划分、清理与分析。先运用数据分析方法将无效客户界定与排除,随后开展有效客户与潜在客户分析、有效客户精细化细分、潜在客户中分离出休眠客户分析等,通过层层分析与剥离,结合银行实际情况,得出对银行有终身价值的客户群。客户数据细分示例如下图:
其次,为了能真正理解客户,需要挖掘更多目标客户的内心深处的需求和行为特征。必须在超越客户身份、年龄类别、资产数字、交易数据等表象洞察客户的需求动因和价值观念,许多洞察客户对于产品的偏好、支付的偏好、渠道的偏好、交易时间的偏好等等。为此,要对分层后的客户进行深入的人文洞察与分析,分析结果用于辅助客户营销策略制定。
那么,什么才是无效客户呢?例如,某零售银行帐户多达350万,暂无精确的客户数,账户金额0-100元达250万(占总账户的71%,可能为无效客户),100-1000元达40多万户,拥有庞大的代发账户。在项目实施之前,该行并没有认识到,中低端账户金额并不等于中低端客户。银行也不知代发客户如何使用其账户资金,不知为什么代发客户资金流出银行。
界定无效客户,需要将数据分析方法与银行实际情况相结合考虑。
在本项目中,由于考虑到零售业务团队、IT团队与财务部门对无效客户定义不一致,首道资深顾问在数据清理之前,与银行相关团队共同协商与定义“什么样的客户在该行算无效客户”。根据第一轮协商,确定以行内资产(AUM)100元(包括100元)以下,并且过去12个月所有账户没有任何动作(如:存储提取和汇入)的客户为无效客户。后又采用统计分析方法与实战经验结合,得出银行各部门均可接受之分类切点。按此方法切除无效客户之后,便获得有效客户数据。
排除无效客户之后,重点对有效客户和潜在客户进行深入挖掘与分析。
在潜在客户中,一部分为有效客户,一部分为休眠客户。对休眠客户,采用相关策略进行营销,观测效果,根据效果为改进银行产品提供相关建议。对于有效客户细分,则可按客户的消费行为、按客户在银行资产额、按客户与银行关系长短、按银行收入贡献度等进行细分,尤其是对于在本行有低资产额的有效客户,需估测客户行外资产,协助进行交叉销售,对本行客户产品拥有情况做精细化分析,将零售客户总客户数,按照产品条线进行细分。通过数据分析,确定客户价值。
[案例二]代发客户流失率分析、客户维护与精准营销
客户流失严重是某银行非常头痛的难题,如何对银行的客户做好维护是该行重点关心的话题。仍然回到之前的问题,该行拥有大量的代发客户,但不知为何代发客户资金流出银行金额较大?针对这个问题,我们的解决方案是:首先对该行代发流失客户进行相关数据细分与分析,确定流失客户特征和属性,同时分析影响客户流失的各因素及各因素之间的相互关系。在此基础上,对流失客户在流失过程中所处时间段,进行数据分析,确定流失客户时空特征,并对流失客户资产特征进行深入分析与判断,进而帮助银行对已经流失或者有流失预警的客户,提供相关流失客户挽留策略。
在项目中我们帮助该行建立了客户维护率模型,以此做好客户流失预判和保留,大幅降低了该行的客户维护成本。通过开发和不断调试,该模型能够帮助该行确定客户流失预期(如预计客户将在3个月或者5个月流失)与营销客户群(如年龄在20-30岁的女性客户群),并给该行提供与设计相关客户维护与吸引策略。例如:若要维护这些客户,避免在预计内流失到他行,则需要配备哪些产品进行营销?需要采取哪些营销活动?通过哪些渠道接触客户?在什么时间段最为适合进行客户挽留?决定哪些客户值得该行团队花费成本进行维护挽留?……为该行大幅降低了客户维护成本,提升了维护效率。客户维护率模型原理示意如下图所示。
除了做好客户流失预判和保留,为了提升该行客户精准营销之预见性,并将精准营销与该行产品(如信用卡)相挂钩,我们在项目中对该行营销数据进行收集与分析,并建立客户反应率模型。首先对该行现有全员营销数据进行收集,按照不同产品条线细分营销数据。与此同时,收集营销客户属性数据,将产品营销数据与客户属性数据相匹配,开发与调试反应率模型。反应率模型用以为营销目标客户群进行系统评分,并根据实际情况设定界定临界分值,剔除分值低于该临界分值的目标客户群,对符合分值之目标客户群提供相关营销策略与产品建议,由此致该行销售成本大幅下降,客户对产品反映率明显提高。客户反应率模型原理示意如下图所示。
总之,大数据时代,“一切从数据出发”应该演变为零售银行日常工作的思维和工作文化。银行需要努力将大数据推向前台,要以客户为中心,深刻洞察客户需求,从而打造个性化的客户体验。因此,应该采用传统数据分析,结合客户需求深入洞察,找出客户行为背后的规律。同时运用大数据技术,得出细分群体的行为特征,从而有目的、有计划地开展精准营销和服务。

㈢ 如何进行互联网金融运营数据的分析

做运营必须要对数据敏感,以下指标需要关注:
1、用户注册数,首先你要知内道你的注册数据
2、注容册成本,就是单个用户成功注册的成本
3、投资成本,就是注册用户到投资的成本
4、复投率,这个很重要,投资人数再多,如果没有复投意义不大,因为拉新的成本比留住老用户要大的多。
5、ROI,其实说了这么多,企业管理者就看重一个指标就是投资回报率,衡量一个推广渠道的优劣,这个是核心指标
知道了哪个渠道的ROI最高,就可以对你的推广策略做参考,这样就能形成良性循环。

㈣ 如何进行互联网金融运营数据的分析,都有哪些方法

作者:张溪梦 Simon
链接:https://www.hu.com/question/29185414/answer/110954989
来源:知乎
著作权归作者所有

我们之前做过一期互联网金融的公开课,「互联网金融增长宝典:三大步骤提高转化,搞定用户运营」,主讲人是 GrowingIO 的业务增长负责人徐主峰,曾任职 Criteo、Microsoft 等公司,有丰富的电商、互联网金融客户解决方案经验。 这是公开课的速记整理。
这是一篇互联网金融宝典,我推荐给所有转化率只有 1%、总是为谁可能是你的购买用户而犯愁的互联网金融的高管、PM、市场运营和销售们。本文通过实战案例,手把手教你建立转化指标、 梳理分析思路、提供分析步骤并最终建立用户行为分析模型。

文 / 徐主峰

大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?

我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。

一 、互联网金融用户四大行为特征

互联网金融平台用户有四大行为特征:

第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:

而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
最后一个特点是「很强的特征性」,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。

二、互联网金融用户运营的三大步骤

针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:

1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
结合典型渠道特点,可以做一个象限图:
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。

㈤ 互联网金融对传统金融行业有哪些影响

互联网金融对传统银行业影响有哪些?又会做出怎样的相应的对策呢?当今互联网金融在我国发展迅速,对我国整个金融产业尤其是银行业产生了巨大影响。先介绍互联网金融的基本内容,进而简述现今互联网金融的发展对我国传统银行业的影响,并针对发展情况和具体现状提出了几点应对措施。 当前,我国金融创新业务蓬勃发展,支付宝、余额宝、网上银行、云金融等新兴业务的受众度越来越广,由此逐步开启我国金融探索的新模式——互联网金融,它在国内的迅速发展将大众带入数据化、信息化、网络化的时代,甚至对生活方式改变产生了影响。互联网金融因其快捷支付、操作方便等优势,与传统金融模式形成了鲜明对比,使金融业内激烈竞争,同时也对传统的金融模式的发展造成了影响。 1互联网金融的内涵 互联网金融是借助于互联网技术、移动通信技术实现资金融通、支付和信息中介等业务的新兴金融模式。它是一个新兴的发展领域,使传统金融行业与互联网精神相结合。互联网金融与传统金融的区别不仅仅在于金融业务所采用的媒介不同,更重要的在于金融参与者深谙互联网“开放、平等、协作、分享”的精髓,在通过互联网实现资源共享的基础上,使其成为一种新的参与形式,而不是传统金融技术的简单升级。 1.1互联网金融的特征 (1)技术需求水平高。互联网金融模式下交易双方可以通过互联网进行直接的沟通和交易,它若要达到规模经济,释放出互联网的成本优势,必修要建立在大数据与云服务的基础之上。交易过程其中涉及到的在线支付全程电子化、数据收集、分析和处理等,都需要强大的计算机技术和网络技术作为支撑。 (2)受众较多的普惠金融。互联网金融模式下,无传统中介、无垄断利润、无交易成本,交易双方能够在时空几乎不受限制的前提下及时满足自身交易需求,能够让更多人参与其中。中小企业融资问题和促进民间金融的阳光化、规范化,更可被用来提高金融包容水平,促进经济发展。 (3)资源配置去中介化。第三方支付组织崛起,加速了金融脱媒的进程,使资金供给绕开商业银行体系,直接输送给需求方和融资者,贷款、股票、债券等的发行和交易以及券款支付直接在网上进行,市场有效性提高,去中介化明显,这无疑是对传统金融业的巨大挑战。 (4)信息对称。传统银行业主要经营信息不对称业务,而互联网金融模式下,信息交流更加畅通,交易双方可以通过网络及时、全面的了解对方的资料,降低信息不对称,从而使金融业减少信息成本和交易成本。同时,由于信息传递便利,对交易对手违约的情况也可以做及时有效的处理,以减少违约损失。 1.2互联网金融的功能 (1)资源配置和平台功能。当前互联网金融企业着眼于个人和小企业客户,借助掌握的庞大数据以及强大的数据处理技术,以更低的成本迅速发现客户,了解其消费行为和信用等级,极大的促成小微金融交易的发生。在这个由互联网创建的平台上,资金需求和供给双方可以自由、灵活、便捷的交易,彼此能够便利的掌握各方资料、更及时准确的获得收益防范风险,从而提高了资源配置效率。 (2)支付功能。当前支付宝、财付通等第三方支付平台不断发展壮大,极大便利交易双方的交易进程,促进了互联网金融的发展,同时也一定程度上削弱了商业银行、传统支付平台的地位。 (3)信息搜集和处理。互联网金融模式下,人们利用“云计算”原理,可以将不对称、金字塔型的信息扁平化,实现数据的标准化、结构化,提高数据使用效率。 (4)价格发现。 互联网金融模式下,资金的需求和供给双方都直接在平台上彼此选择,共同商议交易价格,实现了完全的交易自由化和市场化。随着参与度的提升和交易额的进一步增加,金融机构能够利用这一交易机制判断市场利率走势,找寻符合市场的价格,从而更加精确制定自由市场下的借贷利率和价格基础,为日后实现真正的利率市场化积累经验。 2互联网金融对传统银行业的影响 2.1互联网金融发展迅速,传统银行业出现生存危机 随着互联网金融的产生和不断发展,其交易量和交易规模都有了极大幅度的增长,主要表现在以下几个方面: 其一,第三方支付交易量增长迅速。数据显示,2013年上半年我国第三方支付企业交易规模(线上、线下交易规模总和)达到6.91万亿元,完成2012年全年交易量(104221亿元)的66%,行业增速稳定(赛迪顾问数据)。2013年以来,第三方支付大力拓展新兴行业的业务,其中支付宝与天弘基金联手推出的余额宝,因为短短几天内便带来高达超过百万级的客户以及几十亿的销售,令业内受到极大震动。2012年,互联网支付总金额累计达到830万亿元。这些数据另一方面也表明,电子交易量与交易额的增长极大的挤占了传统金融业的交易份额。 其二,互联网信贷规模迅速扩大。以阿里金融为代表的阿里巴巴集团为例,其在2012年完成贷款数额达40亿美元,2013年更是累计贷款额达1500多亿元,小微信贷的客户数量有已经达到64万,不良率不到1%(中国电子研究中心数据)。 其三,P2P网络贷款平台出现。自2011才出现的P2P贷款平台,目前已有上百家不断发展壮大,其中以人人贷、拍拍贷最为典型。整个借贷过程中,资料与资金、合同、手续等全部通过网络实现,为金融业的发展提供了新的模式。 其四,互联网企业业务扩展。现今众多互联网企业不只局限于第三方网络支付,而是借助信息、数据的积累和技术的增强创新,不断向融资领域扩张,未来可能冲击传统银行的核心业务、抢夺银行客户资源、替代银行物理渠道,颠覆银行传统经营模式和盈利方式。 短短几年,互联网金融的迅猛发展让商业银行面临巨大的压力。互联网金融改变了传统的金融模式,更加开放和透明,同时在信息对称、传递、处理以及资源优化配置等方面都比传统的银行业更具优势。它的出现和发展,无疑对传统银行业的生存带来巨大挑战。 2.2促使传统银行业服务内容、方式发生转变 面对互联网金融的巨大挑战和冲击,传统银行业势必会在其业务内容和服务方式、渠道方面进行调整和转变。客户是商业银行开展业务的基础资源,针对日益成熟的互联网平台,传统商业银行可以即发挥自身优势,又创新开发新型支付、结算等服务方式,从而使得其在2.3使金融脱媒速度加快 传统银行业作为资金融通的借贷机构,其中介角色已逐渐不适应市场发展的状况。而互联网金融的发展则改变这一局面,加速金融脱媒的进程,削弱银行的资金中介功能。互联网金融只需有一个互联网信息联络平台,资金的需求方和供给方在此信息中介上寻求有用信息,一旦达成交易协议,之后的融资交易都是由交易双方自己完成,不再需要传统银行中介来促成交易。3传统金融业的应对措施 3.1调整战略,积极革新 互联网金融模式的出现无疑对传统银行业尤其是大银行提出了挑战,同时也为小银行的发展提供机会。传统金融企业尤其是商业银行,应该在激烈的竞争中摆正位置,积极创新,汲取互联网金融在技术、客户、时效、信息等方面的有利特点,并与自身传统业务相结合,推出更多新兴业务,开发电子银行平台,在满足客户更多需求的同时形成优势。从这一角度看,互联网金融模式的出现也推动了传统银行业的运作模式,从而推动金融行业向更电子化、便捷化、信息化方向发展。 3.2拓展互联网业务,实现服务升级 我国互联网用户规模巨大,已超过5亿,这无疑是金融业巨大的客户资源,互联网也将是最有前景的交易平台。面对互联网金融吸引广大客户的绝佳优势,传统商业银行不仅可以开发互联网新业务,吸引更多客户,也可以通过互联网实现服务升级,以更细致、便利的服务留住更多客户。 通过互联网拓展金融业务,使传统物理网点优势弱化,让银行不再局限于传统的目标客户群,而是吸引更多追求多样化、人性化服务的中小企业及个人客户参与各种金融交易。 3.3以数据、信息为根基,提升资源配置效率 互联网金融模式下,通过数据库和网络信用体系,使得信息快速传递,交易成本大幅减少,资源配置效率极大提高。对此,传统的银行业也需要加大对技术的研发,建立以信息、技术为支撑的数据库,利用网络平台收集发布信息,借助其优势推动自身业务的发展和效率的提高,向数据驱动型银行方向迈进。 3.4明确市场定位,强化专业化、差异化竞争优势随着金融界互联网金融的兴起、更多网络金融企业发展起来争夺现有市场,传统银行业更要重新定义或巩固自身市场定位和业务拓展方向,提供更专业化的服务,注重某一业务的扩展和深化,形成差异化竞争优势。另一方面,应加强对客户信息的收集和整合,针对不同风险偏好、信用水平的客户设计不同金融产品并制定合理价格,让目标客户的需求得到最充分的满足。同时要勇敢面对在专业化技能和水平上面临的重大考验和挑战,最终建立绝佳竞争优势。 3.5完善综合化服务 尽管互联网金融发展迅速、优势显著,但其主要目标客户群体是小微企业和个人客户,主营小额贷款业务,而传统商业银行则具有更雄厚的资金、广阔的的客户资源和发展经验,基础设施完善,网店分布广泛,深得客户的社会的认可与信任。经过数百年的发展,传统银行业逐步探索出一条提供综合性金融服务的发展模式,这比仅靠效率、便捷取胜且业务单一的网络金融公司更具优势。这些都是一个大银行所具备的综合素质。对此,面对互联网金融的冲击,商业银行应继续发挥自身的优势,完善综合化的服务体系,加强对客户全方位金融需求的满足

㈥ 如何进行互联网金融运营数据的分析,都有哪些方法

来源于:知乎
大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?
我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。
一 、互联网金融用户四大行为特征
互联网金融平台用户有四大行为特征:
第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:
而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
可以看到,每隔一段时间,这个用户就会有一段集中的、大量的交互行为。当用户购买完成后,用户的交互行为又变得很少,可能偶尔来看看产品的收益率,但整体的交互指标不会太高,直到他下一次购买。这个用户理财需求的周期是一个月左右。

最后一个特点是「很强的特征性」,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。
二、互联网金融用户运营的三大步骤
针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:
1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
这张图是整体转化漏斗,从不同维度可以做对比,比如我们先选出流量前 10 的渠道:
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。

㈦ 怎样理解互联网行业“数据分析”的意义

本文通过以下七部分拆解数据分析:
一、什么场景和行业需要数据分析
二、数据分析会骗人吗?
三、怎样排除虚假流量?
四、PC端数据分析指标&方法论
五、电商、金融行业数据分析
六、数据分析的趋势
七、怎么培养数据分析的能力?
第二部分拆解六、七部分
六、数据分析的趋势
第一个趋势,大数据的对面不是小数据,而是深数据。大数据以用户量级取胜,同样的营销和经营打法只适用于固定的一类属性的人,转化率不变,分母变大,扩展更多的人群基数,是大数据打法的制胜关键。深数据是说限定一个人群,然后把精力放在收集这群人的购物各个阶段的数据上,用各种各样的营销和经营策略在用户各个购物阶段上进行关怀,提升的是某一个用户的转化率,但分母不变,制胜关键与大数据打法不同,对一个人购物阶段的数据越完整、判断越精准越好。用户基数再大总会有天花板,所以后续的竞争会有相当一部分企业尤其是大企业转向深数据的应用方向。
第二个趋势,大数据采集的壁垒可能会进一步降低。现在各家采集的数据都是自己使用,不愿意公开,或者是采集标准不同,不相信别人采集数据的准确性。这样会造成同一个数据源就会被重复采集,既浪费了硬件资源,也浪费了人力资源。其实对于同一个数据来说,只要采集的方法相同,只需要采集一次,共享就可以了。后面随着数据分析领域的标准化和统一化,数据资源会产生更多交换和交易,在数据采集这个环节会占用更少的精力,从而做更多的数据分析的事情,让数据能产生更高的价值。
第三个趋势,我认为数据分析的岗位可能慢慢就会消失了。数据分析岗位的消失在近几年不会出现,但未来十年内不好说。我认为数据分析的技能对所有互联网从业者来说,就像对于办公软件以及语言的掌握一样,会成为人人必备的技能。
第四个趋势,机器学习的发展将最大限度实现程序化数据应用。
目前数据应用的很多环节都在应用机器学习,比如程序化购买、自动化广告素材优化、智能商品推荐等等,但相互之间是割裂的,还需要人去做各个环节的串联。机器学习会慢慢替代人来串联一个一个的程序化模块,程序化的整体数据应用方案将会覆盖互联网领域。
这四个趋势我认为是我们很快就能够看得到的。
七、怎么培养数据分析的能力?
第一个建议,方向比努力还要重要。
数据分析并不是一个特别细分的领域,它里面包含了很多的方向。作为一个数据分析的入门者,当你了解了数据分析行业概况之后,你要做的一件事情就是了解这个行业有哪些方向,选择一个方向深挖。数据分析有三个常见的发展方向。一是数据挖掘;二是数据建模和数据应用;三是商业数据分析。每个方向都不容易到达巅峰,所以尽快确定主攻方向,尽快扎进去有助于迅速成长为一个领域的专家,和其它专家共同协作攻克数据分析领域更前沿的课题。
第二个建议,懂生意比懂数据重要。
一开始我们就谈到数据的价值是要最终服务于某个具体业务的,所以要想让数据发挥更高价值,对于业务知识的掌握是需要重视的,否则数据分析结果和业务存在距离或不能落地,不能实现商业增值,数据就会因此贬值了。
第三个建议,在场景里做分析比理论分析更重要。
第一方面,优化流量。流量并不是跟媒体或用户斗智斗勇,其本质是面向竞争对手的战争,要争取用同样的价钱买到更多的流量或者同样的流量花的钱更少。有时太关注用户属性或媒体价格,反而忽略了和竞争对手的博弈关系,这种博弈需要人的参与,单纯依靠机器博弈会忽视场景做出错误决策。
第二方面,用户体验输出。你面向的是用户,所以更重要的是你的内容如何跟用户产生共鸣。并不是说你设计的多漂亮、运行的多流畅,而是涉及到用户情感和用户感受层面,这也是量化指标难以驾驭的,需要加入人脑对于场景的理解才能做好。
第四个建议,注重人机协作。
对刚入门的数据分析师,我非常建议把人机协作这件事情提上日程,作为重点学习的方面,善于利用机器的力量代替人的力量,把人解放出来做人更擅长做的事情,人机配合最大化。机器擅长数据清洗、数据建模、数据预警、数据可视化等,所以提升数据分析能力一定是面向未来的,善于让机器去做它更擅长的事情,人去弥补机器的不足,更高效地完成分析工作,节省下来的时间就用来提升人独有的能力。

㈧ 如何进行互联网金融运营数据的分析,都有哪些方法

对比分析、趋势分析、分组分析等。

㈨ 银行或金融单位的数据分析岗需要具备什么能力

最重要还是数据治理和数据分析的能力!

近年来,随着大数据产业的蓬勃发展,企业和政府对于自身数据资产的价值也产生了重新的认识。但遗憾的是数据本身并不能直接产生价值。当我们想利用数据产生价值的时候,很多问题都会暴露出来,比如:数据标准缺失,数据源头不清晰,数据质量缺乏监管等。这就要求我们要有统一的数据标准和良好的数据质量来构成数据价值实现的基础。而数据治理恰是保障这一基础的存在。

国际数据管理协会(DAMA)对数据治理给出的定义是:数据治理是对数据资产管理行使权力和控制的活动集合。它是一个管理体系,包括组织、制度、流程、工具。

在国内企业的实际应用中,一般将数据治理和数据管理综合考虑,认为数据治理是将数据作为组织资产而展开的一系列的集体化工作,包括从组织架构、管理制度、操作规范、信息技术应用、绩效考核支持等多个维度对组织的数据模型、数据架构、数据质量、数据安全、数据生命周期等方面进行全面的梳理、建设以及持续改进的过程。

五、 数据和AI中台

随着金融业正在迈入第四个重大发展阶段--数字化时代,给各金融机构带来了发展机遇,同时也伴随着严峻的挑战。如何解决数据孤岛、新应用与老系统结合难?现有IT能力不足以支撑业务的快速变化?数据调用方式多样且标准不统一质量差?以及数据资源未被挖掘数字化能力得不到释放等问题,是企业面临的共同难题。数据集成和数据资产管理是解决这些问题的有效途径之一。

本课程将从如何进行有效的数据集成、各种数据平台建设介绍、如何有效开展数据治理,以及数据资产管理与数据中台的建设这四个大的方面进行开展。帮助企业在数字化进程中快速建立系统间的数据集成体系,支撑用户数据集成应用的快速实现;提供完善数据管理体系和有效的完成数据整合方案,支撑起上层数据的挖掘、分析应用;对企业的发展战略和业务创新提供有效的数据支撑,洞察企业的运营状态和市场趋势等,提高企业新业务灵活性,创建数据应用敏捷环境。

阅读全文

与互联网金融交易数据分析相关的资料

热点内容
北京期货公司列表 浏览:178
怎么估值股票价格合不合理 浏览:555
判断5日内走势指标公式 浏览:227
广誉远安宫丸的价格 浏览:540
网络金融理财怎么做 浏览:315
招行理财软件 浏览:312
外汇远期案例 浏览:748
外汇交易示例 浏览:532
融资是券商 浏览:859
融资环境是啥 浏览:744
投融资官网 浏览:62
外汇爱华密码 浏览:412
伦敦黄金价格5月6日 浏览:675
基金清明涨了吗 浏览:741
买股票用什么证券公司 浏览:15
追加投资协议 浏览:595
清远农商银行购房贷款 浏览:608
铝锭997价格 浏览:825
邮储银行贵金属客户端 浏览:534
基本面50指数的基金有哪些 浏览:660