『壹』 关于数学的资料
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).
(1)邱氏天地线指标公式扩展阅读:
数学分支
一、数学史
二、数理逻辑与数学基础a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
三、数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
四、代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
五、代数几何学
六、几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
七、拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
八、数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
九、非标准分析
十、函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
十一、常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
十二、偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
十三、动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
十四、积分方程
十五、泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
十六、计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
十七、概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
十八、数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
十九、应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
二十、应用统计数学其他学科
二十一、运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
二十二、组合数学
二十三、模糊数学
二十四、量子数学
二十五、应用数学 (具体应用入有关学科)
二十六、数学其他学科
『贰』 数学名言 25条 谢
数学是无穷的科学. ——赫尔曼外尔
数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深. 数学是科学之王. ——高斯
在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要. ——康扥尔
只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示独立发展的终止或衰亡.
——希尔伯特
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么.
——毕达哥拉斯
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步.
——马克思
一个国家的科学水平可以用它消耗的数学来度量.
——拉奥
柯西
(Augustin Louis Cauchy 1789-1857)
如果认为只有在几何证明里或者在感觉的证据里才有必然,那会是一个严重的错误。给我五个系数,
我将画出一头大象;给我第六个系数,大象将会摇动尾巴。人必须确信,如果他是在给科学添加许多
新的术语而让读者接著研究那摆在他们面前的奇妙难尽的东西,已经使科学获得了巨大的进展。
陈省身
数学是一门演绎的学问,从一组公设,经过逻辑的推理,获得结论。
科学需要实验。但实验不能绝对精确。如有数学理论,则全靠推论,就完全正确了。这科学不能离开数学的原因。许多科学的基本观念,往往需要数学观念来表示。所以数学家有饭吃了,但不能得诺贝尔奖,是自然的。
数学中没有诺贝尔奖,这也许是件好事。诺贝尔奖太引人注目,会使数学家无法专注於自己的研究。
我们欣赏数学,我们需要数学。
一个数学家的目的,是要了解数学。历史上数学的进展不外两途:增加对於已知材料的了解,和推广范围。
笛卡儿
(Rene Descartes 1596-1650)
我思故我在。
我决心放弃那个仅仅是抽象的几何。这就是说,不再去考虑那些仅仅是用来练思想的问题
。我这样做,是为了研究另一种几何,即目的在於解释自然现象的几何。
数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是
客观存在的,上帝必以数学法则建造宇宙。
欧拉
(Leonhard Euler 1707-1783)
虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的
情形:一定的虚构假设足以解释许多现陕。
因为宇宙的结构是最完善的而且是最明智的上帝的创造,因此,如果在宇宙里没有某种极
大的或极小的法则,那就根本不会发生任何事情
祖冲之
(429-500)
迟序之数,非出神怪,有形可检,有数可推。
刘徽
事类相推,各有攸归,故枝条虽分而同本干知,发其一端而已。又所析理以辞,解体用图
,庶亦约而能周,通而不黩,览之者思过半矣。
拉普拉斯
(Pierre Simon Laplace 1749-1827)
这就是结构好的语言的好处,它简化的记法常常是深奥理论的源泉。
在数学这门科学里,我们发现真理的主要工具是归纳和类比。
读读欧拉,读读欧拉,他是我们大家的老师。
一个国家只有数学蓬勃发展,才能表现她的国力强大。
认识一位巨人的研究方法,对於科学的进步并不比发现本身更少用处。科学研究的方法经
常是极富兴趣的部分。
莱布尼茨
(Gottfried Wilhelm von Leibniz 1646-1716)
虚数是奇妙的人类棈神寄托,它好像是存在与不存在之间的一种两栖动物。
不发生作用的东西是不会存在的。
考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标
西尔维斯特
(James Joseph Sylvester 1814-1897)
几何看来有时候要领先於分析,但事实上,几何的先行於分析,只不过像一个仆人走在主
人的前面一样,是为主人开路的。
也许我可以并非不适当地要求获得数学上亚当这一称号,因为我相信数学理性创造物由我
命名(已经流行通用)比起同时代其他数学家加在一起还要多。
魏尔斯特拉斯
(Karl Weierstrass 1815-1897)
一个没有几分诗人才能的数学家决不会成为一个完全的数学家。
『叁』 陕西西安颈椎病半年邱氏悬壶路线图
颈椎病休息练习一下颈椎操:端坐,全身不动,单头部,分别做低头、抬头、左转、右转、前伸、后缩;顺、逆时针环绕动作。每次坚持5分钟,动作要轻缓、柔和。他们治的还行!可去。
『肆』 请问 深圳人腰痛,到治疗腰椎间盘突出的悬壶邱氏的路线
腰椎间盘突出最好的睡姿应该是仰卧和侧卧位。仰卧时在双下肢下面垫一软枕,看得蛮好地。
坐飞机直达。