1. 星云的类型是什么
宇宙中的行星和卫星是常见的天体,但是只有当它们离我们很近的时候,我们才可以看清楚它们的大小和光亮。我们借助望远镜看到的行星,就好像是只有一个盘子大小。如果我们将望远镜的目镜倍数调到60倍的时候,我们看到的木星差不多就和月球那样大小了。可是即使这样,或者更大倍数,依然无法将恒星调节成月球那么大。目前,不管我们使用多大倍数的望远镜,都只能让某颗星看起来像一个光点。实际上,恒星要比木星大好几倍,但因为距离我们太远了,才会使得它们看起来那么小。
但是,并不是所有的天体看起来都是一个光点那么大,星云就是这样的。通过望远镜我们可以看到它们,但是它们经常处于模糊的状态。人们通过观察,将发现的星云分为三类。
第一类是完全处在恒星系统里,被称为“行星状星云”的天体。之所以被叫做“行星状星云”,主要是因为我们在望远镜里看到它们的形状就如同行星那样,呈圆盘状,但除此之外,和行星没有一点相似的性质。这些星云是由恒星自身和它周围的大气层共同组成的。如果考虑上周围的大气层的话,那么这颗巨大的红色恒星就会非常庞大了。我们可以举例来说明一下它有多大。航天飞行器以每小时5000英里的速度向这颗恒星团中最大的恒星飞去的话,需要花9年的时间才可以到达。但是,如果是向这些行星状星云中的一个行星飞去的话,同样的速度则需要花9万年。因此,我们可推算出,如果可以将这个行星状星云看成一颗恒星的话,那么它的体积则是我们已知的最大恒星体积的1万倍。
严格地说,这些星云不是恒星自身,而是恒星的大气层。穿过这些大气层,才能看到位于星云中心的恒星。这类恒星非常小,直径大约只有太阳直径的1/5。表面温度非常高。
第二类星云是由银河系中的很多恒星系统组成的。和第一类星云不同的是,大气层包围着的不只是一颗恒星,而是一组恒星。这类星云没有规则的形状,看上去就像是一颗星球在向另一颗星球喷出巨大的火光。如果用望远镜观察的话,会发现它们是巨大无垠的,因为在一片星云中,可能包含着某一个完整的星座。
在很多情况下,星云状的物质不是呈现明亮的云层状态,而是有一些黑色的斑点。这些黑斑实际上是一些可以吸收光线的物质造成的。我们发现,在吸收光谱中形成的星云光谱中的黑暗线条和从我们的大气中穿过的紫外线辐射的结果是一样的。这种光被冷气团吸收了,又被热气团释放出来。
第三个类型就是河外星云。这类星云和前面提到的星云性质有很大的不同。它们当中的大部分是有固定且很规则的形状,并且很难区分它们之间的特征。这些星云具有发光的性质,曾被科学家命名为“白色星云”。后来,罗斯用6英尺的望远镜进行观察的时候,发现它们中有很多是螺旋结构。因此又把这些星云叫做“螺旋星系”。其中最具有代表性的就是仙女座大星云。
2. 什么是怪星
这已经是30年代的事了。当时天文学家在观测星空时发现了一种奇怪的天体。对它的光谱进行的分析表明,它既是“冷”的,只有二三千度;同时又是十分热的,达到几万度。也就是说,冷热共生在一个天体上。1941年,天文学界把它定名为“共生星”。它是一种同时兼有冷星光谱特征(低温吸收线)和高温发射星云光谱(高温发射线)的复合光谱的特殊天体。几十年来已经发现了约100个这种怪星。许多天文学家为解开怪星之谜耗费了毕生精力。我国已故天文学家、前北京天文台台长和茂兰早在四五十年代在法国就对共生星进行过不少观测研究,在国际上有一定影响。此后,我国另一些天文学家也参加了这项揭谜活动。
半个世纪过去了,但它的谜底仍未完全揭开。
最初,一些天文学家提出了“单星”说,认为,这种共生星中心是一个属于红巨星之类的冷星,周围有一层高温星云包层。红巨星是一处于比较晚期的恒星,它的密度很小,而体积比太阳大得多,表面温度只有二三千度。可是星云包层的高温从何而来呢?人们却无法解释。太阳表面温度只有6000度,而它周围的包层——日冕的物质非常稀薄,完全不同于共生星的星云包层。因此,太阳算不得共生星,也不能用来解释共生星之谜。
也有人提出了“双星”说,认为共生星是由一个冷的红巨星和一个热的矮星(密度大而体积相对较小的恒星)组成的双星。但是,当时光学观测所能达到的分辨论不算太高,其他观测手段尚未发展起来,人们通过光学观测和红外测量测不出双星绕共同质心旋转的现象。而这是确定是否为双星的最基本特征之一。
1981处的讨论会上,人们只是交流了共生星的光谱和光度特征的观测结果,从理论上探讨了共生星现象的物理过程和演化问题:在那以后,观测手段有了很大发展,天文学家用X射线、紫外、可见光、红外到射电波段对共生星进行了大星观测,积累了许多资料。共生星之谜的帷幕在逐渐揭开。
近些年,天文学家用可见光波段对冷星光谱进行的高精度视向速度测量证明,不少共生星的冷星有环绕它和热星的公共质心运行的轨道运动,这有利于说明共生星是双星。人们还通过具有高的空间分辨率的射电波段进行探测,查明了许多共生星的星云包层结构图,并认为有些共生星上存在“双极流”现象(从一个星的两个极区向外喷射物质)。现在,大多数天文学家都认为,共生星可能是由一个低温的红巨星或红超巨星和一个具有极高温度的看不见的极小的热星以及环绕在它们周围的公共热星云包层组成。它是一种处于恒星演化晚期阶段的天体。
有的天文学家对共生星现象提出了这样一种理论模型。共生星中的低温巨星或超巨星体积不断膨胀。其物质不断外溢,并被邻近的高温矮星吸积,形成一个巨大的圆盘,即所谓的“吸积盘”。吸积过程中产生强烈的冲击波和高温。由于它们距离我们太远,我们区分不出它们是两个恒星,而看起来像热星云包在一个冷星的外围。
有的共生星属于类新星。类新星是一种经常爆发的恒星。所谓爆发是指恒星由于某种突然发生的十分激烈的物理过程而导致能量大量释放和星的亮度骤增许多倍的现象。仙女座z型星是这类星中比较典型的,这是由一个冷的巨星和一个热的矮星外包激发态星云组成的双星系统,经常爆发,爆发时亮度可增大数10倍。它具有低温吸收线和高温发射线并存的典型的共生星光谱特征。
但是双星说并未能最后确立自己的阵地。
这其中一个重要原因是迄今为止未能观测到共生星中的热星。科学家只不过是根据激发星云所属的高温间接推论热星的存在,从理论上判断它是表面温度高达几十万度的矮星。许多天文学家都认为,对热星本质的探索,应当是今后共生星研究的重点方向之一。
此外,他们认为,今后还要加强对双星轨道的测量;进一步收集关于冷星的资料,以探讨其稳定性。
天文学家们指出,对共生星亮度变化的监视有重要意义。通过不间断地监视可以了解其变化的周期性,有没有爆发,从而有助于揭开共生星之谜。但是共生星光变周期有的达到几百天,专业天文工作者不可能连续几百天盯住这些共生星,因此,他们特别希望天文爱好者能共同来监视。
揭开共生星之谜,对恒星物理和恒星演化的研究都有重要的意义。但要彻底揭开这个谜看来还需要付出许多艰苦的努力。
3. 神秘深邃的宇宙深空,惊现一抹闪光,它从何而来
在2019年12月,天文学家发现了一种奇怪的超新星,它在离地球1.4亿光年附近的星系中的天龙星座附近。
每一种模型在与观测结果进行对比时都有所差距,很明显为了更好的匹配超新星2019yvq还需要额外的调整。最后,如果喷出物与伴星相碰撞,强烈的Ca ii 的喷出,或是双重爆炸,少量O i 喷出,亦或是剧烈合并,我们预测超新星2019yvq的星云光谱将以H或He的发射为特征。
4. 怪星之谜是什么
这已经是30年代的事了。当时天文学家在观测星空时发现了一种奇怪的天体。对它的光谱进行的分析表明,它既是“冷”的,只有二三千度;同时又是十分热的,达到几万度。也就是说,冷热共生在一个天体上。1941年,天文学界把它定名为“共生星”。它是一种同时兼有冷星光谱特征(低温吸收线)和高温发射星云光谱(高温发射线)的复合光谱的特殊天体。几十年来已经发现了约100个这种怪星。许多天文学家为解开怪星之谜耗费了毕生精力。我国已故天文学家、前北京天文台台长和茂兰早在四五十年代在法国就对共生星进行过不少观测研究,在国际上有一定影响。此后,我国另一些天文学家也参加了这项揭谜活动。
半个世纪过去了,但它的谜底仍未完全揭开。
最初,一些天文学家提出了“单星”说,认为,这种共生星中心是一个属于红巨星之类的冷星,周围有一层高温星云包层。红巨星是一处于比较晚期的恒星,它的密度很小,而体积比太阳大得多,表面温度只有二三千度。可是星云包层的高温从何而来呢?人们却无法解释。太阳表面温度只有6000度,而它周围的包层——日冕的物质非常稀薄,完全不同于共生星的星云包层。因此,太阳算不得共生星,也不能用来解释共生星之谜。
也有人提出了“双星”说,认为共生星是由一个冷的红巨星和一个热的矮星(密度大而体积相对较小的恒星)组成的双星。但是,当时光学观测所能达到的分辨论不算太高,其他观测手段尚未发展起来,人们通过光学观测和红外测量测不出双星绕共同质心旋转的现象。而这是确定是否为双星的最基本特征之一。
1981年的讨论会上,人们只是交流了共生星的光谱和光度特征的观测结果,从理论上探讨了共生星现象的物理过程和演化问题:在那以后,观测手段有了很大发展,天文学家用x射线、紫外、可见光、红外到射电波段对共生星进行了大量观测,积累了许多资料。共生星之谜的帷幕在逐渐揭开。
近些年,天文学家用可见光波段对冷星光谱进行的高精度视向速度测量证明,不少共生星的冷星有环绕它和热星的公共质心运行的轨道运动,这有利于说明共生星是双星。人们还通过具有高的空间分辨率的射电波段进行探测,查明了许多共生星的星云包层结构图,并认为有些共生星上存在“双极流”现象(从一个星的两个极区向外喷射物质)。现在,大多数天文学家都认为,共生星可能是由一个低温的红巨星或红超巨星和一个具有极高温度的看不见的极小的热星以及环绕在它们周围的公共热星云包层组成。它是一种处于恒星演化晚期阶段的天体。
有的天文学家对共生星现象提出了这样一种理论模型。共生星中的低温巨星或超巨星体积不断膨胀,其物质不断外溢,并被邻近的高温矮星吸积,形成一个巨大的圆盘,即所谓的“吸积盘”。吸积过程中产生强烈的冲击波和高温。由于它们距离我们太远,我们区分不出它们是两个恒星,而看起来像热星云包在一个冷星的外围。
有的共生星属于类新星。类新星是一种经常爆发的恒星。所谓爆发是指恒星由于某种突然发生的十分激烈的物理过程而导致能量大量释放和星的亮度骤增许多倍的现象。仙女座z型星是这类星中比较典型的,这是由一个冷的巨星和一个热的矮星外包激发态星云组成的双星系统,经常爆发,爆发时亮度可增大数10倍。它具有低温吸收线和高温发射线并存的典型的共生星光谱特征。
但是双星说并未能最后确立自己的阵地。
这其中一个重要原因是迄今为止未能观测到共生星中的热星。科学家只不过是根据激发星云所属的高温间接推论热星的存在,从理论上判断它是表面温度高达几十万度的矮星。许多天文学家都认为,对热星本质的探索,应当是今后共生星研究的重点方向之一。
此外,他们认为,今后还要加强对双星轨道的测量,进一步收集关于冷星的资料,以探讨其稳定性。
天文学家们指出,对共生星亮度变化的监视有重要意义。通过不间断地监视可以了解其变化的周期性,有没有爆发,从而有助于揭开共生星之谜。但是共生星光变周期有的达到几百天,专业天文工作者不可能连续几百天盯住这些共生星,因此,他们特别希望天文爱好者能共同来监视。
揭开共生星之谜,对恒星物理和恒星演化的研究都有重要的意义。但要彻底揭开这个谜看来还需要付出许多艰苦的努力。