导航:首页 > 基金投资 > 量化投资和pe

量化投资和pe

发布时间:2020-12-14 00:47:44

1. 量化基金有什么优点和缺点

你不努力,没有人能替代你的。27

2. 如何理解量化选股和量化择时之间的关系

所谓量化投资,就是通过定量或统计的方法,不断地从历史数据中挖掘有效的规律并在投资行为中加以利用,甚至通过计算机程序自动执行下单的动作。也就是说,量化投资方法是靠“概率”取胜,其最鲜明的特征就是可定量化描述的模型、规律或策略。

对于股票市场,量化投资主要包括量化选股、量化择时、算法交易、股票组合配置、资金或仓位管理、风险控制等。我们这里重点聊一聊量化选股和择时策略,其中前者解决哪些股票值得关注或持有,后者解决何时买入或卖出这些股票,以期在可承受的风险程度下,获得尽可能多的收益。

第一阶段:选股
选股的目标是从市场上所有可交易的股票中,筛选出适合自己投资风格的、具有一定安全边际的股票候选集合,通常称为“股票池”,并可根据自己的操作周期或市场行情变化,不定时地调整该股票池,作为下一阶段择时或调仓的基础。

量化选股的依据可以是基本面,也可以是技术面,或二者的结合。常用的量化选股模型举例如下:
1多因子模型
多因子模型:采用一系列的“因子”作为选股标准,满足这些因子的股票将作为候选放入股票池,否则将被移出股票池。这些因子可以是一些基本面指标,如 PB、PE、EPS 增长率等,也可以是一些技术面指标,如动量、换手率、波动率等,或者是其它指标,如预期收益增长、分析师一致预期变化、宏观经济变量等。多因子模型相对来说比较稳定,因为在不同市场条件下,总有一些因子会发生作用。
2板块轮动模型
板块轮动模型:一种被称作风格轮动,它是根据市场风格特征进行投资,比如有时市场偏好中小盘股,有时偏好大盘股,如果在风格转换的初期介入,则可以获得较大的超额收益;另一种被称作行业轮动,即由于经济周期的原因,总有一些行业先启动行情,另有一些(比如处于产业链上下游的)行业会跟随。在经济周期过程中,依次对这些轮动的行业进行配置,比单纯的买入持有策略有更好的效果。
3一致性预期模型
一致性预期模型:指市场上的投资者可能会对某些信息产生一致的看法,比如大多数分析师看好某一只股票,可能这个股票在未来一段时间会上涨;如果大多数分析师看空某一只股票,可能这个股票在未来一段时间会下跌。一致性预期策略就是利用大多数分析师的看法来进行股票的买入卖出操作。
与此类似的思路还有基于股吧、论坛、新闻媒体等对特定股票提及的舆情热度或偏正面/负面的消息等作为依据。还有一种思路是反向操作,回避羊群效应(物极必反),避免在市场狂热时落入主力资金出货的陷阱。

4资金流模型
资金流模型:其基本思想是根据主力资金的流向来判断股票的涨跌,如果资金持续流入,则股票应该会上涨,如果资金持续流出,则股票应该下跌。所以可将资金流入流出情况编制成指标,利用该指标来预测未来一段时间内股票的涨跌情况,作为选股依据。
第二阶段:择时
择时的目标是确定股票的具体买卖时机,其依据主要是技术面。取决于投资周期或风格(例如中长线、短线,或超短线),择时策略可以从比较粗略的对股票价位相对高低位置的判断,到依据更精确的技术指标或事件消息等作为信号来触发交易动作。

一般来说,择时动作的产生可以基于日K线(或周K线),也可以基于日内的小时或分钟级别K线,甚至tick级的分时图等。具体的量化择时策略可以分为如下几种:
1趋势跟踪型
趋势跟踪型策略适用于单边上升或单边下降(如果可做空的话)的行情——当大盘或个股出现一定程度的上涨和一定程度的下跌,则认为价格走势会进一步上涨或下跌而做出相应操作(买入->持有->加仓->继续持有->卖出)。

2高抛低吸型
高抛低吸型:高抛低吸型策略适用于震荡行情——当价格走势在一定范围的交易区间(箱形整理)或价格通道(平行上升或下降通道)的上下轨之间波动时,反复地在下轨附近买入,在上轨附近卖出,赚取波段差价利润(下轨买入->上轨卖出->下轨买入->上轨卖出->…)。
3横盘突破型
横盘突破型:价格走势可能在一定区间范围内长时间震荡,总有一天或某一时刻走出该区间,或者向上突破价格上轨(如吸筹阶段结束开始拉升),或者向下突破价格下轨(如主力出货完毕,或向下一目标价位跌落以寻找有效支撑),此时行情走势变得明朗。
横盘突破型策略就是要抓住这一突破时机果断开多或开空,以期用最有利价位和最小风险入场,获得后续利润(空仓或持仓等待机会->突破上轨则买入或平空/突破下轨则卖出或做空)。

常见的趋势跟踪型策略有:短时和长时移动均线交叉策略,均线多头排列和空头排列入场出场策略,MACD的DIFF和DEA线交叉策略等。如下图所示:

常见的高抛低吸型策略一般通过震荡类技术指标,如KDJ、RSI、CCI等,来判断价格走势的超卖或超卖状态,或通过MACD红绿柱或量能指标与价格走势间的背离现象,来预测波动区间拐点的出现。如下图所示:

常见的横盘突破策略包括布林带上下轨突破、高低价通道突破、Hans-123、四周法则等。如下图所示:

必须要强调的是,趋势跟踪型策略和高抛低吸型策略适用于完全不同的市场行情阶段——如果在单边趋势中做高抛低吸,或是在震荡行情中做趋势跟踪,则可能会造成很大亏损。因此,对这二者的使用,最关键的是,第一要尽量准确地判断当前行情类型,第二是要时刻做好止损保护(和及时止盈)。

总结一下:
在疯牛秘籍和疯牛形态系列产品中,提供了大量对股市规律的揭示、以及基于这些规律制定的量化策略,例如基于各类公告事件、资金动向、技术指标等制定的策略和规律,以及次日机会、底部形态反转等对应的交易时机。
这些实时动态的策略可为投资者的选股和择时操作提供高效的、有价值的参考。

3. 量化交易是什么意思

量化交易就是利用数学、统计学、信息技术的量化投资方法来管理投资组版合。简单的讲可权以分为策略构思、建立模型、数据回测、调优再回测、交易跟随这5个步骤。

股票量化投资模型主要分为两大块:风险模型和多因子选股模型,分别用于控制风险和提高收益。风险模型中纳入了行业、市值和风格因子,行业不偏不倚,市值不偏大小,风格兼顾长短期。多因子模型建立在风险模型之上,涵盖七大类筛选因子,覆盖情绪、动量、质量、估值等多类型因子以及大数据投资因子。

的确,要自己做出一个量化策略,肯定需要对一些基本的指标(因子)有清晰的理解,拿你说的基本面来说,比如市盈率(PE)这个因子,PE越高说明股票的估值越高,买入后风险就高;PE越低说明股票估值越被低估,买入后上涨的机会就越大。所以,我们就可以简单的得出一个低PE的量化策略,当然这种单因子策略存在着很大的局限性,真正在做策略的时候我们还需求结合其他的因子,这样做出来的策略的回测结果会更加的理想,实盘的赢率也就更大了。

如果你只是个普通的散户,想在未来的交易中采用量化交易体系,那还是很有必要系统性的学习一下的。

4. 量化投资

没有你想的书

我多年来都有关注这方面的书 可是也没有在国内找到

数量化投资是将投资理念及策略通过具体指标、参数的设计,体现到具体的模型中,让模型对市场进行不带任何情绪的跟踪;相对于传统投资方式来说,具有快速高效、客观理性、收益与风险平衡和个股与组合平衡等四大特点。量化投资技术几乎覆盖了投资的全过程,包括估值与选股、资产配置与组合优化、订单生成与交易执行、绩效评估和风险管理等,在各个环节都有不同的方法及量化模型:

一、估值与选股

估值:对上市公司进行估值是公司基本面分析的重要方法,在“价值投资”的基本逻辑下,可以通过对公司的估值判断二级市场股票价格的扭曲程度,继而找出价值被低估或高估的股票,作为投资决策的参考。对上市公司的估值包括相对估值法和绝对估值法,相对估值法主要采用乘数方法,如PE估值法、PB估值法、PS估值法、PEG估值法、PSG估值法、EV/EBITDA估值法等;绝对估值法主要采用折现的方法,如公司自由现金流模型、股权自由现金流模型和股利折现模型等。相对估值法因简单易懂,便于计算而被广泛使用;绝对估值法因基础数据缺乏及不符合模型要求的全流通假设而一直处于非主流地位。随着全流通时代的到来和国内证券市场的快速发展,绝对估值法正逐渐受到重视。

选股:在当前品种繁多的资本市场中,从浩瀚复杂的数据背后选出适合自己投资风格的股票变得越加困难。在基本面研究的基础上结合量化分析的手段就可以构建数量化选股策略,主流的选股方法如下:

资产配置方法与模型
资产配置类别 资产配置层次 资产配置方法 资产配置模型
战略资产配置 全球资产配置 大类资产配置 行业风格配置 收益测度 风险测度 估计方法 马克维茨 MV 模型 均值 -LPM 模型 VaR 约束模型 Black-Litterman 模型
战术资产配置 ( 动态资产配置 ) 周期判断 风格判断 时机判断 行业轮动策略 风格轮动策略 Alpha 策略 投资组合保险策略

基本面选股:通过对上市公司财务指标的分析,找出影响股价的重要因子,如:与收益指标相关的盈利能力、与现金流指标相关的获现能力、与负债率指标相关的偿债能力、与净资产指标相关的成长能力、与周转率指标相关的资产管理能力等。然后通过建立股价与因子之间的关系模型得出对股票收益的预测。股价与因子的关系模型分为结构模型和统计模型两类:结构模型给出股票的收益和因子之间的直观表达,实用性较强,包括价值型(本杰明·格雷厄姆—防御价值型、查尔斯·布兰迪—价值型等)、成长型(德伍·切斯—大型成长动能、葛廉·毕克斯达夫—中大型成长股等)、价值成长型(沃伦·巴菲特—优质企业选择法、彼得·林奇—GARP价值成长法等)三种选股方法;统计模型是用统计方法提取出近似线性无关的因子建立模型,这种建模方法因不需先验知识且可以检验模型的有效性,被众多经济学家推崇,包括主成分法、极大似然法等。

多因素选股:通过寻找引起股价共同变动的因素,建立收益与联动因素间线性相关关系的多因素模型。影响股价的共同因素包括宏观因子、市场因子和统计因子(通过统计方法得到)三大类,通过逐步回归和分层回归的方法对三类因素进行选取,然后通过主成分分析选出解释度较高的某几个指标来反映原有的大部分信息。多因素模型对因子的选择有很高的要求,因子的选择可依赖统计方法、投资经验或二者的结合,所选的因子要有统计意义上或市场意义上的显著性,一般可从动量、波动性、成长性、规模、价值、活跃性及收益性等方面选择指标来解释股票的收益率。

动量、反向选股:动量选股策略是指分析股票在过去相对短期的表现,事先对股票收益和交易量设定条件,当条件满足时买进或卖出股票的投资策略,该投资策略基于投资者对股票中期的反应不足和保守心理,在投资行为上表现为购买过去几个月表现好的股票而卖出过去几个月表现差的股票。反向选股策略则基于投资者的锚定和过度自信的心理特征,认为投资者会对上市公司的业绩状况做出持续过度反应,形成对业绩差的公司业绩过分低估和业绩的好公司业绩过分高估的现象,这为投资者利用反向投资策略提供了套利机会,在投资行为上表现为买进过去表现差的股票而卖出过去表现好的股票。反向选股策略是行为金融学理论发展至今最为成熟,也是最受关注的策略之一。

二、资产配置

资产配置指资产类别选择、投资组合中各类资产的配置比例以及对这些混合资产进行实时管理。资产配置一般包括两大类别、三大层次,两大类别为战略资产配置和战术/动态资产配置,三大层次为全球资产配置、大类资产配置和行业风格配置。资产配置的主要方法及模型如下:

战略资产配置针对当前市场条件,在较长的时间周期内控制投资风险,使得长期风险调整后收益最大化。战术资产配置通常在相对较短的时间周期内,针对某种具体的市场状态制定最优配置策略,利用市场短期波动机会获取超额收益。因此,战术资产配置是在长期战略配置的过程中针对市场变化制定的短期配置策略,二者相互补充。战略资产配置为未来较长时间内的投资活动建立业务基准,战术资产配置通过主动把握投资机会适当偏离战略资产配置基准,获取超额收益。

三、股价预测

股价的可预测性与有效市场假说密切相关。如果有效市场假说成立,股价就反映了所有相关的信息,价格变化服从随机游走,股价的预测就毫无意义,而我国的股市远未达到有效市场阶段,因此股价时间序列不是序列无关,而是序列相关的,即历史数据对股价的形成起作用,因此可以通过对历史信息的分析来预测股价。

主流的股价预测模型有灰色预测模型、神经网络预测模型和支持向量机预测模型(SVM)。灰色预测模型对股价的短期变化有很强的预测能力,近年发展起来的灰色预测模型包括GM(1, 1)模型、灰色新陈代谢模型和灰色马尔可夫模型。人工神经网络模型具有巨量并行性、存储分布性、结构可变性、高度非线性和自组织性等特点,且可以逼近任何连续函数,目前在金融分析和预测方面已有广泛的应用,效果较好。支持向量机模型在解决小样本、非线性及高维模式识别问题中有许多优势,且结构简单,具有全局优化性和较好的泛化能力,比神经网络有更好的拟合度。

四、绩效评估

作为集合投资、风险分散、专业化管理、变现性强等特点的投资产品,基金的业绩虽然受到投资者的关注,但要对基金有一个全面的评价,则需要考量基金业绩变动背后的形成原因、基金回报的来源等因素,绩效评估能够在这方面提供较好的视角与方法,风险调整收益、择时/股能力、业绩归因分析、业绩持续性及Fama的业绩分解等指标和方法可从不同的角度对基金的绩效进行评估。

绩效评估模型 / 指标

绩效评估准则
择时 / 股能力
业绩归因分析
风险调整收益
业绩持续性
Fama 业绩分解

模型 / 指标
T-M 模型

H-M 模型

GII 模型

C-L 模型
资产配置收益

证券选择收益

行业选择收益

行业内个股选择收益
RAROC

Sharp, Stutzer

Treynor, Jensen

, ,
双向表分析

时间序列相关性
总风险收益

系统风险收益

分散化投资收益

五、基于行为金融学的投资策略

上世纪50~70年代,随着马科维茨组合理论、CAPM模型、MM定理及有效市场假说的提出,现代金融经济学建立了一套成熟的理论体系,并且在学术界占据了主导地位,也被国际投资机构广泛应用和推广,但以上传统经济学的理论基石是理性人假设,在理性人假设下,市场是有效率的,但进入80年代以后,关于股票市场的一系列研究和实证发现了与理性人假设不符合的异常现象,如:日历效应、股权溢价之谜、期权微笑、封闭式基金折溢价之谜、小盘股效应等。面对这些金融市场的异常现象,诸多研究学者从传统金融理论的基本假设入手,放松关于投资者是完全理性的严格假设,吸收心理学的研究成果,研究股市投资者行为、价格形成机制与价格表现特征,取得了一系列有影响的研究成果,形成了具有重要影响力的学术流派-行为金融学。

行为金融学是对传统金融学理论的革命,也是对传统投资实践的挑战。随着行为金融理论的发展,理论界和投资界对行为金融理论和相关投资策略作了广泛的宣传和应用,好买认为,无论机构投资者还是个人投资者,了解行为金融学的指导意义在于:可以采取针对非理性市场行为的投资策略来实现投资目标。在大多数投资者认识到自己的错误以前,投资那些定价错误的股票,并在股价正确定位之后获利。目前国际金融市场中比较常见且相对成熟的行为金融投资策略包括动量投资策略、反向投资策略、小盘股策略和时间分散化策略等。

六、程序化交易与算法交易策略

根据NYSE的定义,程序化交易指任何含有15只股票以上或单值为一百万美元以上的交易。程序化交易强调订单是如何生成的,即通过某种策略生成交易指令,以便实现某个特定的投资目标。程序化交易主要是大机构的工具,它们同时买进或卖出整个股票组合,而买进和卖出程序可以用来实现不同的目标,目前程序化交易策略主要包括数量化程序交易策略、动态对冲策略、指数套利策略、配对交易策略和久期平均策略等。

算法交易,也称自动交易、黑盒交易或无人值守交易,是使用计算机来确定订单最佳的执行路径、执行时间、执行价格及执行数量的交易方法,主要针对经纪商。算法交易广泛应用于对冲基金、企业年金、共同基金以及其他一些大型的机构投资者,他们使用算法交易对大额订单进行分拆,寻找最佳路由和最有利的执行价格,以降低市场的冲击成本、提高执行效率和订单执行的隐蔽性。任何投资策略都可以使用算法交易进行订单的执行,包括做市、场内价差交易、套利及趋势跟随交易。算法交易在交易中的作用主要体现在智能路由、降低冲击成本、提高执行效率、减少人力成本和增加投资组合收益等方面。主要的算法包括:交易量加权平均价格算法(VWAP)、保证成交量加权平均价格算法(Guaranteed VWAP)、时间加权平均价格算法(TWAP)、游击战算法(Guerrilla)、狙击手算法(Sniper)、模式识别算法(Pattern Recognition)等。

综上所述,数量化投资技术贯穿基金的整个投资流程,从估值选股、资产配置到程序化交易与绩效评估等。结合量化投资的特点及我国证券市场的现状,好买认为量化投资技术在国内基金业中的应用将主要集中在量化选股、资产配置、绩效评估与风险管理、行为金融等方面,而随着包括基金在内的机构投资者占比的不断提高、衍生品工具的日渐丰富(股指期货融资融券等)以及量化投资技术的进步,基金管理人的投资策略将会越来越复杂,程序化交易(系统)也将有快速的发展。

5. 如何量化炒股

我在其中遇到很多烦恼,在量化投资中,不知道你是不是有这样的烦恼,下面是我的烦恼:

1、专业量化炒股工具太复杂,有没有适合普通股民的量化分析工具呢? 有自己的选股方法和参考指标,如何去验证是否能带来收益呢? 很多牛人都有自己的炒股策略,谁的才是真的好呢? 增减或替换选股指标,需要大量的数据运算,耗时费力,该如何避免呢?

不过这些问题数库多因子量化平台可以帮你解决,3分钟量化选股,做自己的股票分析师。

数库多因子量化平台是数库公司为了普及量化投资,为广大股民提供的新型可视化量化工具,通过寻找与股票未来收益最相关的因子作为选股标准,综合运用多因子构建模型对股票进行评价,选取综合得分高的股票,以期获得超额收益。

总结:无论你是小白还是专业人士,都可以在数库多因子量化平台上尽情施展自己的炒股策略,炒股变得不再乏味烦心,而是便捷高效,轻松实现高收益。

6. 什么是α,β收益,量化投资的策略创建与分析

α收益:一揽子可以自定义低估、同质化并且有波动的股票,不断买入更便宜的,卖出更贵的,从而获得的收益。

例如:几个跟着沪深300的ETF,你发现手中持有的沪深300ETF溢价2%了,而市场上同时存在一个折价1%的ETF,那么就卖出溢价高的沪深300ETF,去买折价的,这样虽然始终持有沪深300ETF,但获得了超越沪深300指数本身的收益,就是α收益。

解释一下同质化:明显所有的沪深300ETF是同质化的,也可以认为最小市值20个股票是同质化的,所有银行股是同质化的,分级A是同质化的。下文中有解释自定义低估。

β收益:基本面本身上涨是β收益。

例如,自定义最小市值的10个股票为一个指数,这些最小市值从5亿涨到20亿,这就是β收益。自定义最低股价10个为一个指数,从牛市的5元跌到2元,那么β收益就是负的

量化策略创建三个步骤:

  1. 策略的理论基础

  2. 历史回测

  3. 找到策略黑天鹅。

(一)策略的理论基础:(大致分为三类):

基本面理论

按基本面又可以分为:1.价值型;2.成长型;3.品质型;按中国特色A股基本面又可以添加;4.小市值型;5.股价型

技术面理论

按技术面又可以分为:1.趋势型,2.趋势反转型,3.缩量反弹,4.指数轮动,5.择时

风险套利

风险套利(或者称轮动):不断买入更便宜的,卖出更贵的。


注意:

有些理论基础并不牢固,并且不能很好解释(这也导致了各种投资流派互相不服)

有些量化跳过了理论基础,直接根据历史统计进行量化(本文不讨论),例如,统计两会前后涨跌,一季度历史表现最好板块

对策略理论的解释:

基本面策略可以定义什么是低估,比如低PE是低估,低市值是低估,低股价是低估,高ROE是低估,高成长是低估;也可以自定义低估,PB*PE是低估,总市值*流通市值小是低估

基本面理论提供了一揽子同质化并且有波动的股票。有些基本面策略的股票间波动较小,例如最低PE股,一段时期内总是那么几个银行股;有些波动较大,比如小市值型

技术面理论有些很难定义什么是低估,比如趋势型;有些则看似可以定义低估,例如,BIAS最小,20日跌幅最大,其实也不是

能自定义低估的策略是风险套利,不能自定义低估的策略是统计

基本面本身能上涨,就获得了β收益


我得出的结论是:风险套利策略的核心是对自定义低估的轮动,即不断获得α收益!!

如何获得α收益:大部分基本面策略的收益是因为风险套利获得的;也就是不断买入更低估的,卖出更贵的;也就是因为调仓周期内因不同股票的波动而产生收益,因此适当缩短周期有利于提高收益;所以在一年内交易次数越多,alpha收益越大(投资大师说的减少交易次数,并不适用于套利)

理论本身获得的β收益并不多,甚至为负(价值型由于近几年市场估值不断降低,不调仓的话,收益是负的)

我们应当寻找的是:基本面理论本身能上涨,且能提供同质化,波动较大的策略(即获得α,又获得β)

统计策略其内在逻辑说服力小,是过去的概率来预测未来

(二)历史回测:回测中最重要一点是:不要欺骗自己

历史回测中要用到一个哲学思想,叫做奥卡姆剃刀:较简单的理论比复杂的理论更好,因为它们更加可检验

改变测试起始时间。调仓周期超过2天的策略,应该试遍每个起始时间,取平均收益,这才最接近策略真实历史回测,因为理论上起始时间变化一两天对策略收益影响是不大的,如果变化很大就说明过度优化。

不要创建静态股票池。历史上每个阶段都有大牛股,完全可以收集大牛股作为股票池,算好调仓周期,每个阶段买最牛的,收益可以美到不敢想象

不要用PE.PB等指标精确逃顶抄底,最多用来确定一个大致范围。每次大顶点位都是不同的,这样的择时毫无意义。

先用25个以上股票测试,确定策略有效性,再减少数量做策略,如果25个测试无效,那么一两个即使收益很好,也该放弃。

改变条件权重。如果稍微改变权重,收益变化很大,那么就降低策略未来预期收益,别指望策略以后会表现这么好。

尽量从07年开始测试。除非你能确定每个时间市场的风格,显然这是不可能的。

同一套择时系统,如果用在策略1上回撤是30%,用在策略2上回撤是15%,你肯定会选择策略2,如果策略1和2本质上是差不多的策略,别太高兴,在未来,策略1和2表现谁好谁坏也是难说的

(三)找到黑天鹅:每个策略都有黑天鹅

价值型,成长型,品质型策略,黑天鹅是过一个季度,可能财务数据完全变了,因此持仓个数不能太少,行业要分开

小市值,低价,低交易额策略,黑天鹅是出现仙股

统计类,技术类策略,黑天鹅是理论本身就不完美

7. 如何开发量化投资模型

4.如何进行量化投资
一个量化投资的交易系统主要包括三个部分,阿尔法模型、风险模型和交易成本模型。
阿尔法模型旨在预测宽客所考虑金融产品的未来趋势;
风险模型旨在帮助宽客投资不太能带来收益但会造成损失的敞口规模;
交易成本模型用于帮助确定从目前的投资组合到新的投资组合的交易成本。
目前对于量化交易的研究重点大都集中在对阿尔法模型的研究上。
阿尔法模型
阿尔法模型是量化交易系统的第一个重要组成部分,主要是为了寻找盈利机会。
阿尔法是希腊字母α的音译,常用于量化表述投资者的盈利能力或投资者得到的与市场波动无关的回报。
阿尔法模型分为:
趋势形、回复型、技术情绪型、价值型/收益型、成长型和品质型
趋势型和均值回复型交易策略都依赖价格数据;纯技术情绪型的策略比较少见通常都只作为一个辅助因子;而价值型/收益型、成长型和品质型策略都基于基本面数据
趋势跟随策略
趋势跟随策略是基于以下基本的假定:在一定时间内市场通常朝着同一方向变化,据此对市场趋势做出判断就可以作为制定交易策略的依据。常见于期货市场,最常用移动平均线交叉来定义趋势。
均值回复策略
均值回复策略的基本理论认为,价格围绕其价值中枢而上下波动,判断出这个中枢以及波动的方向便足以捕捉到交易机会。统计套利是用的最多的均值回复策略,认为价格出现背离类似股票的价值终究会缩小到合理的区间范围。
技术情绪型策略
这一类策略没有明确的经济理论支撑,主要通过追踪投资者情绪相关指标来判断预期回报,如交易价格、交易量以及波动性指标等。比如观察期权市场的认沽认购量和隐含波动率做现货的择时,再者就是高频交易通过限价指令簿的形态来判断近期市场情绪。
价值型/收益型策略
价值型策略主要用于股票交易。这类策略认为市场倾向于高估高风险资产的风险,而低估低风险资产的风险。因此,在适当的时间买入高风险资产和卖出低风险资产,就可以获得收益。常用的指标有PE(市盈率)、PB(市净率)等,常应用于股票多空。
成长型策略
成长型策略试图通过对所考虑资产以往的增长水平进而对未来的走势进行预测。他认为价格上涨通常都是存在趋势的,价格上涨最快的产品通常比同类产品更具有优势,他要求投资者能尽早判断公司的股价处于增长期,从而捕捉到公司的股价未来更大的上涨幅度。宏观上常见于外汇市场,例如持有经济迅速增长的国家的外汇,这些国家的利率比经济增长缓慢或处于复苏期的经济体要高;股票市场通常用EPS等指标度量。
品质型策略
这类策略的支持者认为,在其他条件相同的条件下最好买入或持有高品质的产品而做空或减少持有低品质的资产。这类策略比较看重资金的安全,受宏观市场影响比较大,常用的指标有杠杆比率、收入波动比、管理团队水平和欺诈风险。
不管是什么类型的策略最终受益都体现在交易中关于买卖时机的把握和持有头寸选择的技巧。
https://uqer.io/community/list 这个社区里面有很多关于量化的策略,也有很多牛人,可以和他们多讨论讨论的。

8. 投机与投资的区别是什么.

投资和投机都是为了获得收益,但投资和投机该有以下一些区别:
1.两者行为时间限度的长短不版一样。投资一权般是长期持有证券、股票等,周期比较长,而投机的时间比较短,买卖比较的迅速。
2.两者的利益侧重点不一样,所承担的风险也不同。投资在于长期的利益,就算短期内有亏损对整体也不会有太大影响,风险也比较低。而投机则看重短期的收益,售价格涨跌的影响比较大,风险比较大。
3.投资是买卖自己了解的东西,而投机是买卖自己不懂的东西。
本条内容来源于:中国法律出版社《中华人民共和国金融法典:应用版》

9. 同花顺量化

量化投资抄只是一种工具,当然通过现在智能工具比纯技术范的好一些,更理性一些。现在国内的公司:东方财富、大智慧、同花顺和chinasope数库等都这一领域布局,国外的量化投资更加成熟一些,国内这块发展还处于发展期。相信以后会快速发展吧。

阅读全文

与量化投资和pe相关的资料

热点内容
混合型基金涨跌看什么 浏览:628
专利对股票 浏览:125
东方财富手机版怎么看南下资金 浏览:907
小米贷款取现收费吗 浏览:423
南宁信托大厦 浏览:642
明股实债信托 浏览:789
遗产信托基金 浏览:67
安徽和生投资 浏览:823
股指期货对应基金 浏览:89
股票里做t是什么意思 浏览:968
玩股票资金怎么筹 浏览:49
银行贷款日利息怎么算 浏览:211
什么是互联网基金产品 浏览:688
私募基金的主要策略 浏览:211
外汇Ham 浏览:178
钱吧理财 浏览:684
中邮稳定收益A基金 浏览:851
企业投资管理办法 浏览:388
外汇什么指标最准 浏览:291
招商银行沪深300理财怎么样 浏览:967