❶ 如何评价微软研究院开发的AI量化投资平台Qlib
鸡肋。
Quantopian当年那么火,Point72给他投资,Steve Cohen的资源给他用,今年还是倒闭了。原因是量化平台的盈利模式是有问题的,第一,它不专业,第二,因为不专业,用它的人不赚钱。Point72旗下的Cubist很赚钱,但Cubist不会把infra给Quantopian用,因为能赚钱的infra是稀缺资源。所以Quantopian的框架在专业人士看来非常业余。也正是因为业余,专业的人不用,业余的人用Quantopian的赚不了钱,因此无法和平台分成,所以这样的平台无法盈利。
微软的高管去量化界也有先例,微软前COO Kevin Turner曾到Citadel Securities担任CEO,但是没有太大建树,最终Griffin任命赵鹏,是赵鹏将CitSec发扬光大。
所以说,程序员在不懂套路的情况下,直接跨界去做投资,难度极大。不是因为程序员技术不行,主要是他们不懂投研体系。好的程序员只有在培训以后才能成为好的QR。打个比方,James Simons何等样人,他很早就想做股票,一群科学家一直不得要领,摸索了好几年没什么进展,当时PDT和DE Shaw股票都比RenTech做得好得多。最后RenTech是靠PDT的前雇员把统计套利的策略框架做好,然后另一个既懂架构,又懂股票的程序员,把策略细节调好,才有了这么牛比的大奖章。
拿统计套利来说,谈谈为什么微软的这个QLib平台注定不行。统计套利类策略的核心是信号。怎么从各种数据源里挖掘有意义的信号,如何检验信号的有效性,这些都是统计学的范畴。A股简单的量价信号目前仍然很好用,只要是懂套路的机构,近两年超额30个点没什么问题。可是美股做统计套利可没这么容易,大部分简单的量价信号都是没用的,大奖章return on GMV也做不到10个点。成熟市场里,不了解市场就想挖一些信号是很难的。
模型上,有机器学习的程序员在调参上的确有一些优势,但是label怎么处理,feature怎么engineering这种问题,一般人可能就找不到北了。
其他方面,风格怎么控,算法怎么下单,这些都需要实战经验。不了解市场,想靠机器学习里一些fancy的算法搞个印钞机,太难。现在好多家私募都说深度学习多么有用,的确会有点用,但是绝对没有那么神,事实上大家做得都差不多,不算很深,深度学习真要那么有用,谁会到处说?量化这行,真正有用的东西,虽然最终都会被同行知道,但很少有人会在公开场合大说特说的。
综上,量化策略涉及到统计、数据挖掘、交易、市场理解、机器学习等各个方面,光靠一套机器学习算法库,再加上一个优化器,就想搅动市场,没这么容易的。
❷ 量化交易不是保赚的也没有什么高大上!揭开量化交易的神秘面纱
量化交易是近几年来一个金融交易领域的流行词汇。所谓量化,就是指数量化。量化交易就是把交易行为以 定量的形式为交易者提供交易的依据,使交易结果尽可能排除和 避免 主观交易的随意性和心理波动。
量化交易在美国已经搞了30多年了,最著名的是数学家西蒙斯和他的文艺复兴公司的大奖章基金, 从1989年期起,复兴 科技 公司的大奖章基金( Medallion )的年回报率平均高达35%,大奖章基金被誉为是最成功的对冲基金。
狭义的角度讲量化交易就是十几年前就已经开始的程序化交易,它是把交易过程中运用到的交易方法,用计算机语言编成计算机软件程序,实现机器选股,自动下单买卖等行为。通过计算机程序可以省去一些人力成本(人力分析慢,毕竟现在市场上已经4000多只股票,未来会更多),同时也省去了一些交易员不必要的盯盘时间,也一定程度规避情绪心理因素影响。
广义的角度讲量化交易就是我们交易者在交易过程中运用的系统化交易。根据一些固定的交易模型进行交易的系统化的方法,系统化交易是股票交易盈利的前提条件。比如基本面的价值投资法,把很多财务数据和指标进行数量化的梳理成固定的模型,这属于基本面量化;人们包括利用技术分析理论编成的各种指标,选股条件等,属于技术面量化;
另外量化交易又根据交易的形式分为:算法交易(也就是高频交易,主要用于抢单),套利交易(期货品种的跨期套利和跨品种套利),根据现有的各种技术分析理论编成的实现全自动交易的计算机程序等等。
量化交易不是盈利的保证,它必须建立在一定的成功概率的模型基础上才能应用的实战交易中。我们都知道赌场盈利的根本其实就是比玩家盈利的概率高1%而已,这高出的1%盈利概率保证了赌场久赌必赢。所以量化交易其实追求的就是比市场上大多数人盈利的概率高出1%即可。但是这1%不是普通投资者可以做到的。需要大量的实战总结和复盘总结,最终形成所谓量化交易模型。
最后提醒投资者注意:量化交易模型主要来源于以下两种模式:
1、数据挖掘,从 历史 数据中找到在以往 历史 中盈利概率大的模型,这种模型一般为黑箱模型,黑箱就是你只能看到结果,不知道其中的逻辑,比如现在流行的机器学习模型,就是典型的黑箱模型。它的缺点非常明显,就是你不清楚盈利原理,未来是否还能继续出现符合上述模型的情况的概率有多少,也就是说,这种模型, 历史 业绩非常好,但是未来能否盈利非常的不确定。
2、来源于主观交易者的盈利模型,根据盈利的主观交易者的系统化的交易方法,用计算机语言编成的交易程序。这种交易模型有的可以量化,有的不可量化,如果可以量化的部分较多,而且量化后回测 历史 数据盈利概率较高的话,那么很大概率就是可以用于实盘 。可惜这种模型凤毛麟角,可遇不可求。另外一种就是少部分可以量化,多数不能量化,而能量化的部分在 历史 回测中表现很差,主观交易者的盈利多数可能来源于主观判断,此种模型占绝大多数。比如徐翔的涨停板敢死队的打板模型,在涨停板上买入可以量化,但是如果仅仅是涨停板买入,却不能实现盈利,盈利的更大原因在于盘手所谓的盘感,所以这些盘感的挖掘数量化,才是这类模型的关键。
综上所述,量化交易仅是交易的一个小分支而已,不是盈利方法。不要迷信所谓量化交易。
其实把交易系统化才是关键,系统化关键又是尽量把主观交易数量化客观化。祝投资顺利!
❸ 如何考大数据分析师
大数据分析师报考要求如下:
1、初级数据分析师:
(1)具有大专以上学历,或从事统计工作的人员;
(2)通过初级笔试、上机考试、报告考核,成绩全部合格。
2、中级数据分析师:
(1)具有本科及以上学历,或初级数据分析师证书,或从事相关工作一年以上;
(2)通过中级笔试、上机考试,成绩全部合格;
(3)通过中级实践应用能力考核。
3、高级数据分析师:
(1)研究生以上学历,或从事相关工作五年以上;
(2)获得中级数据分析师证书。
(3)通过高级笔试、报告考核后,获取准高级数据分析师证书;
(4)考生在获得准高级证书后,在专业领域工作五年,并撰写一篇专业数据分析论文,经答辩合格,获取高级数据分析师合格证书。
(3)量化投资数据挖掘扩展阅读
技能要求
1、懂业务
从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理
一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
❹ 《打开量化投资的黑箱(原书第2版)》pdf下载在线阅读全文,求百度网盘云资源
《打开量化投资的黑箱(原书第2版)》([美]里什·纳兰(Rishi K. Narang))电子书网盘下载免费在线阅读:
链接:https://pan..com/s/1AVZn75jUrfOILX-IBCd52Q
书名:打开量化投资的黑箱(原书第2版)
豆瓣评分:7.6
作者:[美]里什·纳兰(Rishi K. Narang)
出版社:机械工业出版社
原作名:Inside the Black Box: A Simple Guide to Quantitative and High Frequency Trading
译者:上官丽英/王思洋/王锦炎
出版年:2016-5-25
页数:356页
内容简介
无论是量化、算法,还是黑箱交易,谈论的都是一件事情:通过计算机执行的系统化交易。
尽管一些人斥责其危险地脱离了人类的控制,是市场过度波动的驱动者,但另一些人认为量化交易能够很好地克服人类的贪欲以及人类在制定投资决策中的认知偏差等弱点。
总的来说,不管你对量化交易有多少了解,事实上,量化基金持续超越了市场表现,这也是许多聪明的投资者追逐黑箱的原因。
不幸的是,量化交易的很多部分仍是模糊不清的,这主要是因为宽客对系统如何工作的细节的极度保密。但是,在这个版本中,作为量化交易者和大师级解读者,作者巧妙地告诉读者,量化交易比你想象的更易于理解与掌控。
本书目的是让读者甚至是对数学或者技术有所恐惧的投资者能理解量化交易,这本书会带领你走过黑箱之旅。作者用简明的语言指明宽客们所做的工作,揭开了量化交易和量化交易策略的神秘面纱。
在简明介绍量化交易准则和一般性准则之后,作者转入正题,开始介绍典型黑箱系统的详细内件,用非技术性的语言解释内件是什么以及内件之间是如何组合在一起的。
然后,用大量的实际案例以及真实的故事清晰地解释:
最常见的量化系统结构
宽客如何追逐阿尔法
量化交易中的主观判断水平
高频交易及设施
执行算法以及如何工作
宽客如何构建风险模型以及如何知道特定的模型是否真正有效
基于理论驱动的系统和数据挖掘策略之间的重要不同点
如何评估量化经理以及他们的策略
如何将量化策略嵌入一个全面的投资组合策略,为何它们都很重要
量化交易的现行趋势和未来趋势以及在未来的角色
本书阐述了黑箱交易,使其透明化,直觉上更易感知、更易于理解。对于机构投资者、资产管理者、养老金管理者以及渴望在今天充满不确定性的金融市场获得优势的所有精明投资者而言,本书是一本必读物。
作者简介
里什 K.纳兰(Rishi K. Narang)华尔街顶级数量金融专家,资深对冲基金经理。目前是特勒西斯资本有限责任公司(Telesis Capital LLC)的主要合伙人,这家公司主要采用量化交易策略进行投资。此前,他是圣巴巴阿尔法策略(Santa Barbara Alpha Strategies)的总经理和投资组合经理。里什还曾与别人合作创建Tradeworx公司并担任总裁,这家公司在1999~2002年管理着量化对冲基金。自1996年开始,他就开始从事对冲基金事业,专注于量化交易策略。里什毕业于加利福尼亚大学伯克利分校,获得了经济学学士学位。
❺ 求量化投资数据挖掘与实践pdf。
我这边有两本书,一本是量化投资基础知识(涉及量化投资模型专、期货套利、期属现套利、算法交易等)另一本是数据挖掘:概念与技术与实战(原书第3版)不知道是不是你想要的!你这个合并在一起的这本书没有!!!
量化投资基础知识(涉及量化投资模型、期货套利、期现套利、算法交易等)因为同时不能上传2哥文件,你要的话我给你发邮箱!