导航:首页 > 金融投资 > 互联网金融数据量

互联网金融数据量

发布时间:2021-07-25 22:31:34

⑴ 在哪儿可以找到互联网金融的行业数据

前瞻产业研究院 提供的《2015-2020年中国互联网金融行业市场前瞻与投资战略规划分析报专告》显示,截止至属2014年底,我国互联网金融市场规模已经突破10万亿元。以P2P业态为例,过去5年中,各类P2P平台都获得了年均超过250%的爆发式增长。

不过,作为新兴行业,互联网金融问题不容忽视。互联网金融的安全风险也日益加剧。仍以P2P业态为例,数据显示,2015年上半年我国问题P2P平台数量为273家,数量超过2014年问题P2P平台数总和,今年以来,P2P网络贷款平台出现跑路或提现困难的公司更是高达677家。

⑵ 互联网金融:网络有多大 市场就能有多大

口号是这么喊的,,,,但是事实不是,,,很难的,,我最放心余额宝,,,京东金融理财

⑶ 如何进行互联网金融运营数据的分析,都有哪些方法

作者:张溪梦 Simon
链接:https://www.hu.com/question/29185414/answer/110954989
来源:知乎
著作权归作者所有

我们之前做过一期互联网金融的公开课,「互联网金融增长宝典:三大步骤提高转化,搞定用户运营」,主讲人是 GrowingIO 的业务增长负责人徐主峰,曾任职 Criteo、Microsoft 等公司,有丰富的电商、互联网金融客户解决方案经验。 这是公开课的速记整理。
这是一篇互联网金融宝典,我推荐给所有转化率只有 1%、总是为谁可能是你的购买用户而犯愁的互联网金融的高管、PM、市场运营和销售们。本文通过实战案例,手把手教你建立转化指标、 梳理分析思路、提供分析步骤并最终建立用户行为分析模型。

文 / 徐主峰

大部分的互联网金融公司最为纠结的一点是,流量这么大,获客成本这么高,为什么最后的转化率和成单量却这么低?怎样才能提高用户运营效率?用户行为数据分析怎样把处在不同购买决策阶段的用户挑选出来,帮助互联网金融公司做到精益化运营?

我们的客户中很大一部分来自互联网金融,比如人人贷等行业前 10 的互联网金融公司。在服务客户的过程中,我们也积累了大量的数据驱动业务的实践案例,来帮助客户创造价值。

一 、互联网金融用户四大行为特征

互联网金融平台用户有四大行为特征:

第一流量转化率低,下图是某互联网金融公司网站上,新客户过去 30 天整体购买转化漏斗,其转化率只有 0.38%:

而这并非个例,实际上,绝大多数互联网金融公司,在 web 端购买的转化率基本都在 1% 以下,APP购买率在 5% 左右,远远低于电商或者其他在线交易的购买率。
第二,虽然转化率低,但是客单价却很高。一般来说,电商行业客单价在几十到几百,而互联网金融客户,客单价从几千到几万,某些特殊领域甚至高达几十万。而客单价高,就意味着用户购买决策会更复杂,购买周期也会更长。
第三,用户购买行为有很强周期性。电商的客户下次购买时间是不确定的,但是互联网金融平台上,真正购买的用户,是有理财需求的用户,在资金到期赎回产品后,一定还会进行下一次购买,只不过未必发生在你的平台上。
最后一个特点是「很强的特征性」,主要包括两个特征:
A:用户的购买偏好比较容易识别,理财产品数量和品类都很少,所以用户购买的需求或者偏好,很容易从其行为数据上识别出来。
B:用户购买过程中的三个阶段特别容易识别:
用户在购买决策阶段,有大量的交互事件产生,他会看产品,比对不同产品的收益率和风险,比对不同产品的投资期限等等;
但是一旦他完成了产品的购买,就不会有大量的交互行为产生,他可能仅是回来看一看产品的收益率。
当用户的产品资金赎回之后,又有大量的交互事件产生,实际上他处在下一款产品购买的决策期。

二、互联网金融用户运营的三大步骤

针对互联网金融用户行为的四个特征,在用户运营上有三个比较重要的阶段性工作:

1.首先,获取可能购买的目标用户,合理配置在渠道上的投放预算,以提高高质量用户获取的比例:
渠道工作的核心,主要是做好两方面的工作:宏观层面,优化整个渠道的配置;微观层面,单一渠道角度来说,根据渠道配置的策略,有针对性地实施和调整。
具体渠道的实施,大家都比较熟悉,但是对于整个渠道组合配置的优化,很多人接触的其实并不多。
以渠道一为例,总体的转化率是 0.02%;在过去 30 天站内总体的流量是 18.9K,漏斗第一级到第二级的转化率是 3.36%,这样一共是五级,我们看到最终渠道一带来总体的成交用户一共是 4 人。
类似的,前 10 的渠道数据都很清晰。不同渠道带来的流量,不同渠道总体的转化率,以及不同渠道在整个转化路径上每步的转化率都可以看到。
这里面有几个渠道很有特点:
渠道一的特点,渠道一带来的流量是所有 10 个渠道里最大的,但是它的总体转化率却是低的;
渠道二和渠道七,渠道二的量很大,但是转化率是零。渠道七量比较一般,转化率也是零;
渠道九和渠道十,这两个渠道是所有渠道里转化率最高的。但是这两个渠道特点,是带来流量不是特别大……
结合典型渠道特点,可以做一个象限图:
第一象限(右上角)渠道质量又高,带来流量又大的,这里面渠道三四五是符合这个特征的,渠道策略应该是继续保持和提高渠道的投入。
第二象限(左上角)渠道的质量比较高,但带来的流量比较小,这里面包含的主要渠道就是八九十。对应的主要策略是,加大渠道的投放,并且在加大投放的过程中,要持续关注渠道质量的变化。
我们先看第四象限(右下角),渠道质量比较差,但是带来流量比较大,这里面主要有渠道一和渠道二。相对应的渠道策略,应该在渠道做更加精准的投放,来提高整个渠道的质量。
第三象限(左下角)这个象限里渠道质量又差,带来流量又小,比如渠道六跟渠道七。我们是否要直接砍掉?这里建议是,策略上要比较谨慎一些。所以在具体渠道的策略上,业绩保持监测,然后小步调整。
根据上面数据分析得出的结果,做过渠道优化后,就会为我们带来更多高质量的用户。
2.接下来就要把高价值的用户——真正有购买需求,愿意付费、购买的用户找出来。
将资源与精力投入到真正可能购买的用户上的前提是,我们要能够识别出,哪些是真正有价值的用户?哪些是价值偏低的用户?
其实对于互联网金融平台来说,甚至所有包含在线交易的平台,用户的购买意愿,是可以从用户的行为数据上识别出来的。由于互联网金融平台的特殊性,相比于电商平台来说,商品品类更少,平台功能也更为简单,所以用户的行为数据,也更能反应出互联网金融平台上用户的购买意愿。
把用户在平台上的所有行为总结一下,核心的行为其实并不多,具体包括:
用户查看产品列表页,说明有一些购买意愿,点击某个产品,说明用户希望有进一步的了解。用户最终确认了支付,完成了购买,购买流程就走完了,他的理财需求已经得到了满足。每一种行为都表示出用户不同程度的购买意愿,所以获得用户在产品里的行为数据就十分重要。
既然用户行为数据这么重要,那么怎样获取呢?GrowingIO 以无埋点的方式,全量采集用户所有的行为数据,根据我们对业务的需求,配比成不同的权重系数,并按照每个用户购买意愿的强弱,进一步分群。
这是我们一个客户制作的用户购买意愿指标的范例,刚才的前 5 个行为,都是用户在购买前典型的行为:
每种典型事件的权重系数不一样,用户购买意愿是越来越强的:用户点了投资按纽,甚至点了提交的按钮,显然要比他单单看产品列表页,或者单单看产品页、详情页的意愿强。越能反应用户购买意愿的事件,你给它分类的权重应该是最大的,这是大的原则,0.05 还是 0.06 影响并不大,所以不必纠结。
这样通过这种方式,我们就可以按照每个用户的所有行为,给用户做购买意愿打分的指标,最终形成用户购买意愿的指标。
这是我们从高到低截取部分用户购买意愿打分的情况,第一列是每个用户的 ID,第二列是按照购买意愿给每个用户打分的情况。得分高的,就是购买意愿最强烈的用户。
拿到所有用户购买意愿之后,我们就可以按照用户购买意愿的强烈与否,把所有的用户分成不同的群体,来做针对性的运营。
这是在把用户在过去 14 天内,由其产生的所有行为数据,按照购买意愿打分的权重,把打分大于 5 的用户找出来,在总体用户里,这部分用户购买意愿排名前 20% ,我们给它起个名字,叫购买意愿强烈的用户。
类似我们还做了购买意愿中等的用户分群,这是购买意愿排名在 20-60% 之间的用户;购买意愿排名在最后 40% 的用户,是购买意愿最弱的用户分群。
分群之后,点击任意一个分群,都会以用户 ID 的形式列出来。因为你要有用户的 ID ,才能对这些用户施加运营策略。每个用户最近 30 天的访问次数,最近的访问地点,最后一次访问时间都可以看到。
接下来针对这些购买意愿强烈的用户,怎样推动用户的转化呢?
3.采取针对性的运营策略,提高高价值用户的转化率。
首先我们来看一下购买偏好,互联网金融平台商品品类是比较少的,用户购买的目的性也比较清晰,一般商品的品类有这么几种:
第一种:债券型理财产品
第二种:股票型理财产品
第三种:货币型理财产品
第四种:指数型理财产品
第五种:混合型理财产品…
我们把用户在不同品类商品上的访问时长占比算出来,就能比较好地了解用户的购买偏好。比如下图,我们用用户访问债券型产品详情页的访问时长,除以用户在站内总体的访问时长,就能够得到用户在债券产品上访问时长占比的指标。
我们还是使用用户分群的工具,把在债券型产品上的访问时长占比大于40%的用户分出来,这是有非常强烈表征的客户,他购买的偏好就是债券型的产品。
同时我们再设定另外一个指标,比如用户购买意愿指标,之前我们做过大于5,也就是购买意愿排名在前 20% 的。
通过这两个条件,我们就可以把购买偏好是债券型产品,同时有强烈购买意愿的用户找出来,这两个指标的关系是并(and)的关系。同样我们可以按照用户的购买偏好,把关注其他品类的用户,都做成不同的用户分群,然后形成不同购买偏好的用户群体。
针对这些用户,其实在运营策略上,我们可以从三个层面来展开来进行做:
从购买阶段的角度,首先我们把所有用户可以分成新客和老客。对于这两个群体来说,运营策略和运营重点是非常不一样的。
新客群体,是从来没有在平台上发生过购买的用户,我们要根据用户的购买意愿,做进一步的运营。
老客群体,也就是在平台上已经发生过产品购买的用户,除了关注用户的购买意愿之外,用户的资金状态(资金是否赎回)也是非常重要的参数。
用户是否购买过产品?购买产品的用户是否已经赎回资金?这两个内容,其实是一个用户当前的属性。在我们分群的工作里,这有个维度的菜单,通过这个维度菜单,我们就可以把具有某种属性的用户找出来:
这里我做了一个分群,我们可以看一下。在维度的菜单里,我们把是否购买过产品的维度值设置成了 1 。把资金是否已经赎回这个维度的值,也设置成了 1 。实际上是把那些资金已经赎回的老用户找出来;同样在指标这个菜单里,我们同时也把有强烈购买意愿的用户找出来,时间是过去 14 天,指标大于 5 。
这样我们就制作了一个用户分群,而这个用户分群里所有用户,要满足下面的三个特征:
特征一:购买过产品的老客。
特征二:他们的资金,目前已经赎回了。
特征三:过去 14 天内的行为数据,表明这个用户有着强烈的购买意愿。
同理我们把所有用户,整理为下面几个不同类别,对应不同的运营策略:
比如新客里,当前有购买意愿的,其实他属于购买决策期的新用户。应该根据用户的购买偏好,推荐这种比较优质的理财产品。并给予一定的购买激励,来促进这些新客在平台上的第一次购买,这个对于新客来说是非常重要的,以此类推。
相比于电商或者其他行业,互联网金融平台结合行业和用户的特点,从用户行为数据分析的角度,驱动产品业务以及提高用户的转化率,有更加重要的意义。

⑷ 从事互联网金融该如何应用大数据

大数据应用到互联网金融业主要表现在以下三类:

第一,高频交易(high-frequency trading)和算法交易(algorithmic trading),以高频交易为例,交易者为获得利润,利用硬件设备和交易程序的优势,快速获取、分析、生成和发送交易指令,在短时间内多次买入卖出,且一般不持有大量未对冲的头寸过夜,如在期货市场、外汇市场应用较多。

第二,通过收集、分析社交媒体上的内容进行市场情绪分析,大约两年前,对冲基金开始从Twitter、Facebook、聊天室和博客等社交媒体中提取市场情绪信息,开发交易算法。例如一旦从中发现有自然灾害或恐怖袭击等意外信息公布,便立即抛出订单。

第三,加强风险的可审性和管理力度,支持精细化管理,设立N条准则筛选出合适的借款人或理财产品,如PP宝 在选择合适的投资平台时有20多条准则,判断出那个平台的风险小,该平台的债权风险小,把投资风险控制在最小。

⑸ 互联网金融模式的大数据金融

大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方式回对其数据进行专业答化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。

⑹ 大数据金融是不是互联网金融

大数据并不是单指互联网金融。

大数据金融是指依托于海量、非结构化的数据,通过互联网、云计算等信息化方式对其数据进行专业化的挖掘和分析,并与传统金融服务相结合,创新性开展相关资金融通工作的统称。

大数据金融扩充了金融业的企业种类,不再是传统金融独大,并创新了金融产品和服务,扩大了客户范围,降低了企业成本。大数据金融按照平台运营模式,可分为平台金融和供应链金融两大模式。两种模式代表企业分别为阿里金融和京东金融。

拓展资料:

互联网金融行业面临大洗牌

在去杠杆的严监管的大背景下,近期信用风险事件频频爆发,根据网贷之家的数据显示,自6月以来,P2P行业新增问题平台133家,其中95家发布了相关逾期或停业兑付公告。

违约事件频发的主要原因1)随着市面上资金收紧,一些资质较差的企业出现债务违约,影响到相关P2P平台2)一些产品不合规、风控能力较差的平台,高返利的平台受到资金收紧的影响资金链断裂3)P2P平台频繁暴雷,引发投资者恐慌性挤兑,一些运营良好的P2P平台受到波及导致兑付困难。

短期来看行业集中暴雷会导致行业承压,另一方面随着不良企业出清,风控良好、经营合规的头部互金公司有望迎来快速发展,互联网金融企业能够服务一些传统金融机构难以触及的领域作为传统金融机构有效补充,随着百行征信建立,征信体系的逐渐完善,预计行业风控能力将显著提升,重点关注行业头部企业

⑺ 有什么数据可以衡量银行业收到互联网金融的挑战

建议你去人行官网查阅2013年存贷款数据。
提醒:余额宝的每日年化收益率,其实是天弘内增利宝货币市场基金的收益容率,本质上不是互联网金融而是货币基金的业绩,所以用该数据反映互联网金融发展欠妥,建议用天弘增利宝2013年的总份额变化数据来参考。
另外,“宝类”产品只是互联网金融的一小部分,此外还有大数据模式阿里小贷,P2P领域中的开鑫贷,建议你分析出这几个分支在互联网金融中的比例,进行综合分析。
这样做,才是全面,客观,有效的

⑻ 如何进行互联网金融运营数据的分析

做运营必须要对数据敏感,以下指标需要关注:
1、用户注册数,首先你要知内道你的注册数据
2、注容册成本,就是单个用户成功注册的成本
3、投资成本,就是注册用户到投资的成本
4、复投率,这个很重要,投资人数再多,如果没有复投意义不大,因为拉新的成本比留住老用户要大的多。
5、ROI,其实说了这么多,企业管理者就看重一个指标就是投资回报率,衡量一个推广渠道的优劣,这个是核心指标
知道了哪个渠道的ROI最高,就可以对你的推广策略做参考,这样就能形成良性循环。

⑼ 互联网金融运营需要关注的数据有哪些

如果是互复联网金融方面制的网站,看你用了什么推广营销的方法;
1、如果你是靠SEO,那么需要关注网站的UV、PV、跳出率、平均访问深度、注册量、转化率、以及投资金额等;
2、如果是付费推广的方法,可以重点关注转化率、UV(独立访客数)、投资金额等等

⑽ 互联网金融 数据分析需要哪些数据

交易额,投资人数,用户的属性,平台的安全信息等等一系列的,你可以自己去相关的数据论坛去看看咯。

阅读全文

与互联网金融数据量相关的资料

热点内容
投融资会上的讲话 浏览:45
富国互联科技股票基金封闭期 浏览:120
bf一款神奇的游戏理财 浏览:11
招商融资发布会 浏览:20
租赁表外融资 浏览:575
中国股票价格为什么高 浏览:803
适合20岁怎么理财 浏览:83
理财保险的意义与功用 浏览:533
黄金藤价格价格 浏览:503
85港币折合人民币是多少人民币 浏览:505
江苏八方贵金属软件下载 浏览:344
证监会首批批准证券投资机构 浏览:928
趋势投资利润回吐 浏览:593
益民集团产业投资 浏览:398
平安综合理财 浏览:461
不良贷款不良资产 浏览:307
如何用100万来投资理财 浏览:793
县域理财 浏览:425
理财王冠 浏览:623
理财客户细分 浏览:16