导航:首页 > 金融投资 > 公司金融正态分布

公司金融正态分布

发布时间:2021-07-15 11:57:20

1. 为什么说正态分布在经济领域应用广泛

正态分布在经济领域的广泛应用:
1.财务会计研究领域
随着金融市场和现代企业制度的建立,财务会计向企业外部提供的财务信息倍受各利益关系人关注,而“财务会计信息有没有用”这样一个挑战性的问题出现了。所以早期的实证会计研究主要是从有效市场假设(EMH)和资本资产定价模型(CAPM)出发,检验财务会计数据与其他经济指标(特别是股价)的关系,如果财务会计指标(特别是会计收益指标)与股票价格相关,则说明会计信息的披露对证券市场的资源配置功能有效。后来这一结论被实证研究所证实,这有效地驳斥了“会计无用论”,从而奠定了实证会计研究的地位。近年来,会计政策选择成为实证会计研究的重心,以解释和预测企业“为什么会选择这种会计政策,而不采取那种会计政策”。例如:会计政策选择与企业规模、地区分布、资本结构、分红计划。债务契约的关系;企业的外部利益关系人对会计信息反应的研究等,如果将上述问题给予抽象,它们都涉及“变量间的相互关系”这样一个可以归结为数学的问题。所以,针对上述问题,在研究随时间变化、具有随机性而又前后相互关联的动态数据时,用到时间序列分析,它包括建立时间序列模型(ARIMA模型)、参数估计及谱估计等理论与方法。在讨论多元变量之间是否存在线性相关时,运用多元线性回归模型、典型相关分析和残差检验。由于正态分布在会计数据中广泛存在,例如,以任一会计科目作为总体,则不同时期该科目数额特别巨大和特别小(如为零)的比较少,则可以视之符合正态分布等,所以与正态分布相关的检验方法被大量使用:检验母体均值与原假设均值是否具有显著差异的U一检验,检验两个母体均值是否相等的T一检验,检验母体的方差与原假设方差是否具有显著差异的X2一检验,检验两个正态母体方差是否相等的F一检验。对不确定的母体分布采用非参数统计方法,如非参数检验。国外实证研究证实股票价格波动具有马尔可夫性,即在有效的资本市场中现在的股票价格已反映了以往和现在的全部经济信息,以前的股价行料对将来的股价波动不再具有信息价值,“将来”只与“现在”有关,而与“过去”无关。解决这方面问题的模型有:回归一马尔可夫模型、随机游动模型。
2.理财、管理会计研究领域
现代理财论,总的说来是围绕估价问题而展开的,这里所说的估价,既包括对个别“资本资产”的估价,也包括对企业总体价值的估价。如探讨投资风险和投资报酬的投资组合理论(Portfolia Theory),后来该理论又发展为资本资产定价模型(CAPM),套利定价理论(Arbitrage Pricing Theroy)、探讨资本结构与企业总价值关系的资本结构理论(Capital Structure Theory)、MM(Modigliani, Miller)理论、米勒模型(Miler Model)等。其中广泛应用了微积分、线性代数及概率论与数理统计。针对创新金融工具的估价模式——期权定价模型则广泛地应用了偏微分方程、随机微分方程及倒向随机微分方程等较为先进、复杂的数学理论与方法。
管理会计主要是利用信息来预测前景,参与决策。筹划未来,控制和评价经济活动等,保证以较少的劳动消耗和资金占用,取得较好的经济效益。管理会计应用的数学方法也相当广泛,例如预测成本和销售额时采用回归分析,评价企业财务状况、投资效益时采用层次分析法,预测经营状况是采用具有吸收状态(企业破产)的马尔可夫链。另外还有“经济定货量”模型、“经济生产量”模型、敏感分析、弹性分析等,则是应用微分学解决经济问题的一些典范。管理会计中许多问题可以归结为:数学分析中的极值问题;数学规划中一定约束条件下的目标函数的最值问题;马尔可夫相关理论问题;在约束条件和目标函数不能用线性方程或线性函数表示时的非线性规划问题;在解决多阶段决策问题时的动态规划问题;解决如何经济、合理地设置服务设施,从而以最低成本最大地满足顾客需要问题时的排队论问题,如人力资源选择,机器设备选购等;导源于宏观经济管理并在微观经济管理中也有广泛地应用的投入——产出分析问题,例如,用于多阶段生产条件下生产与成本计划的制定。
3.审计研究领域
审计主要是通过对财务会计信息的鉴证,以增强信息使用者对财务会计信息信任程度。在审计中最常用的数学方法是抽样技术。随着统计科学和企业规模的不断发展,许多会计公司将统计抽样理论与审计相结合,设计出了审计抽样技术。对受审单位的内部控制制度有效性进行符合性测试时,采用属性抽样,如连续性抽样,发现抽样。在实质性测试中采用变量抽样,如分层随机抽样及累计概率比例抽样法(PPS),这对于减少审计风险和成本,提高审计工作效率和效果意义重大,因为严格遵循随机原则抽取样本,根据总体容量、误差率、精确度、可信水平等因素综合分析得到样本容量,其分布规律更加接近于审计总体的分布规律。另外,在预测突发事件或不确定性问题时,历史数据或既定的模型并不能完全反映它们,在这种情况下还要结合专家的专业判断、经验进行预测,也就是说,这一步的后验分布又是下一步先验分布的基础,不断对模型进行修正使之“动态化”,以提高预测精度。近年来,判别分析模型和聚类分析模型在国外也开始引入审计研究领域。对于定性资料的统计分析方面,Logit模型和probit模型被广泛应用,例如用于预测注册会计师签署审计意见类型等。
值得注意的是,当人们寻求用定量方法处理复杂经济问题时,容易注重于数学模型的逻辑处理,而忽视数学模型微妙的经济含义或解释,实际上,这样的数学模型看来理论性很强,其实不免牵强附会,从而脱离实际。与其如此,不如从建模型一开始就老实承认数学方法的不足,而求助于经验判断,将定性的方法与定量的方法相结合,最后定量。

2. 请问考金融数学的时候有给出正态分布的值吗没有给出的话要怎么算呢

放心吧!生命表,需要用到的分布的分布表,分布的分布式及其基本性质都会提供给你,你不用担心这些。

3. 正态分布论的应用有哪些呢

事实上正态分布不可能彻底地从金融中消失。正态分布被诟病的原因,无外乎其两个局限-缺乏分布的不对称性(偏离均值同样大小的损失与盈利同概率)以及缺乏厚尾性.+但是目前并未有能够为业界广泛接受的可以克服以上缺点的金融收益率模型。相反,许多提出来的所谓的厚尾分布,如NIG,normal mixture,variance gamma等,其实都不过是正态分布在某种意义上的推广。还有credit model中用来替代Gaussian Copula的random factor loading,也只不过是在前者的基础上,使market factor loading由常数变为market variable dependent,其核心依然是Gaussian Copula.+由于正态分布良好的解析性质,以及由中心极限定理保证的其在分布族中的特殊地位,即使在许多应用中直接套用正态分布并不合适,它也是很好的一个benchmark和starting point.+如果彻底摒弃正态分布,许多金融模型就会成为无源之水,无根之木。

4. 求助!基金从业关于分位数正态分布的问题解释

这是一个常数。1.65处,对应的正态曲线,形成的面积正好是5%分位。书上例子就是一模一样的题。

5. 渐进正态分布的概念

渐进分布是指某种特定分布的大样本性质,即在样本量足够大时的极限分布。
所谓大样本是指能够满足中心极限定理的要求下,使抽样分布趋向于正态分布的样本容量。大样本的具体数目应该根据总体分布情况,采用的估计方法和对估计精度的要求具体予以确定,很难用一个具体的数值进行界定。
在金融工程领域,样本的概率分布未必能够呈现出严格的正态分布,往往呈现出有偏的渐进正态分布;在金融参数估计时,一般也需要通过对渐进分布的研究确定恰当的统计量,这是统计量的大样本性质以及渐进分布显得尤为重要。

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

6. 正态分布在金融中是否还有应用和发展的必要

当然有啊,如保险就会用这个,比如某年龄阶段患某病的风险。

7. 金融学哪方面要用到正态分布还是不用

金融学会应用到很多统计学的知识 其中正态分布是统计学中最常用的分布 在估算风险 估计数据回归方程等方面都会用到

8. 遇到一个正态分布 N(0,0,16,25,0),一般不都两个参数吗这里五个参数什么意思

这个是二维的正态分布,前面两个参数是X1,X2的均值,16,25是X1,X2的方差,0代表二者的相关系数,这里独立。

μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。

(8)公司金融正态分布扩展阅读:

由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。

为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。 服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)

9. 金融管理及风险机构题:监管人员在计算DLC银行时,假定收入回报服从正态分布,均值为60万美元,标准差

是这个标准,差的话,我觉得是非常好计算的,因为本身来说是有个控制一红

10. 金融数据的尖峰厚尾特征是什么意思

金融数据的尖峰厚尾特征是相比较标准正态分布来说的,标准正态分布的偏度为0,峰度为3,通常做实证分析时,会假设金融数据为正态分布,这样方便建模分析。

但是实证表明,很多数据并不符合正态分布,而更像尖峰厚尾,就是峰度比3大,两边的尾巴比正态分布厚,没有下降得这么快。

厚尾分布主要是出现在金融数据中,例如证券的收益率。 从图形上说,较正态分布图的尾部要厚,峰处要尖。

直观些说,就是这些数据出现极端值的概率要比正态分布数据出现极端值的概率大。因此,不能简单的用正态分布去拟合这些数据的分布,从而做一些统计推断。一般来说,通过实证分析发现,自由度为5或6的t分布拟合的较好。

(10)公司金融正态分布扩展阅读:

基金收益率不服从正态分布,存在显著的尖峰厚尾特性,我国基金市场还不是有效市场。人民币汇率收益率波动有集群性效应,不符合正态分布,有尖峰厚尾的特点。结果表明稳定分布能更好的拟和中国股票收益率的实际分布,稳定分布较好的处理中国股票市场中的“尖峰尾”现象。

但很多资本市场上的现象无法用EMH解释,如证券收益的尖峰厚尾,证券市场的突然崩溃,股价序列的长期记忆性等。对期货价格数据进行统计分析,发现期货价格具有“尖峰厚尾”特性。实证结果表明:我国股价波动具有尖峰厚尾特征、异方差性特征和波动的持续性和非对称特征。

而股票市场的收益率从分布的角度看,并不服从标准的正态分布,而是呈现出一种“尖峰、厚尾”的特征。

阅读全文

与公司金融正态分布相关的资料

热点内容
恒冒财富理财 浏览:721
银行跨境理财 浏览:352
股票一次最多买多少股 浏览:666
办房贷要买贵金属 浏览:702
80年代理财 浏览:903
中翌理财亏掉怎么报警 浏览:295
人民币增值利好哪些股 浏览:532
招财猫理财投资 浏览:577
征信可以办助学贷款吗 浏览:259
东方财富期货怎么关注好友组合 浏览:263
红枣期货10000元 浏览:494
51vv股票是什么意思 浏览:641
信托与pe 浏览:64
新闻联播人民币 浏览:529
股份融资 浏览:55
翘然天津资本投资咨询有限公司 浏览:456
融资融券宝典 浏览:29
定期理财规划 浏览:599
恒大集团股票行情 浏览:6
信托信披 浏览:944