导航:首页 > 金融投资 > 互联网金融大数据案例

互联网金融大数据案例

发布时间:2022-05-16 00:59:16

『壹』 大数据技术在金融行业中的典型应用

大数据技术在金融行业中的典型应用
近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。
大数据在金融行业的典型应用场景
大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。第一,数据体量大(Volume),海量性也许是与大数据最相关的特征。第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。
金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性,让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。
当前,大数据在金融行业典型的应用场景有以下几个方面:
在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。
在证券行业的应用主要表现为:一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度,帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。
互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。
金融大数据的典型案例分析
为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。
该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。
系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。
网络的搜索技术正在全面注入网络金融。网络金融使用的梯度增强决策树算法可以分析大数据高维特点,在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。网络“磐石”系统基于每日100亿次搜索行为,通过200多个维度为8.6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为网络内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500家社会金融机构,帮助其提升了整体风险防控水平。
金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。
二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。
三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。
四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。
以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。

『贰』 金融领域7大数据科学案例

金融领域7大数据科学案例
1 金融领域有哪些典型数据问题?
2 金融领域应用那些数据科学方法?

近年来,数据科学和机器学习应对一系列主要金融任务的能力已成为一个特别重要的问题。 公司希望知道更多技术带来的改进以及他们如何重塑业务战略。
为了帮助您回答这些问题,我们准备了一份对金融行业影响最大的数据科学应用清单。 它们涵盖了从数据管理到交易策略的各种业务方面,但它们的共同点是增强金融解决方案的巨大前景。
自动化风险管理管理客户数据预测分析实时分析欺诈识别消费者分析算法交易深度个性化和定制结论自动化风险管理
风险管理是金融机构极其重要的领域,负责公司的安全性,可信度和战略决策。 过去几年来,处理风险管理的方法发生了重大变化,改变了金融部门的性质。 从未像现在这样,今天的机器学习模型定义了业务发展的载体。
风险可以来自很多来源,例如竞争对手,投资者,监管机构或公司的客户。 此外,风险的重要性和潜在损失可能不同。 因此,主要步骤是识别,优先考虑和监控风险,这是机器学习的完美任务。通过对大量客户数据,金融借贷和保险结果的训练,算法不仅可以增强风险评分模型,还可以提高成本效率和可持续性。

数据科学和人工智能(AI)在风险管理中最重要的应用是识别潜在客户的信誉。 为了为特定客户建立适当的信用额度,公司使用机器学习算法来分析过去的支出行为和模式。 这种方法在与新客户或具有简短信用记录的客户合作时也很有用。
虽然金融风险管理流程的数字化和自动化处于早期阶段,但潜力巨大。 金融机构仍需要为变革做好准备,这种变革通过实现核心财务流程的自动化,提高财务团队的分析能力以及进行战略性技术投资。 但只要公司开始向这个方向发展,利润就不会让自己等待。
管理客户数据
对于金融公司来说,数据是最重要的资源。因此,高效的数据管理是企业成功的关键。今天,在结构和数量上存在大量的金融数据:从社交媒体活动和移动互动到市场数据和交易细节。金融专家经常需要处理半结构化或非结构化数据,手动处理这些数据是一个巨大的挑战。
然而,对于大多数公司来说,将机器学习技术与管理过程集成仅仅是从数据中提取真实知识的必要条件。人工智能工具,特别是自然语言处理,数据挖掘和文本分析有助于将数据转化为智能数据治理和更好的业务解决方案,从而提高盈利能力。例如,机器学习算法可以通过向客户学习财务历史数据来分析某些特定财务趋势和市场发展的影响。最后,这些技术可用于生成自动报告。
预测分析

分析现在是金融服务的核心。 值得特别关注的是预测分析,它揭示了预测未来事件的数据模式,可以立即采取行动。 通过了解社交媒体,新闻趋势和其他数据源,这些复杂的分析方法已经实现了预测价格和客户终生价值,未来生活事件,预期流失率和股市走势等主要应用。 最重要的是,这种技术可以帮助回答复杂的问题 - 如何最好地介入。
实时分析
实时分析通过分析来自不同来源的大量数据从根本上改变财务流程,并快速识别任何变化并找到对其的最佳反应。财务实时分析应用有三个主要方向:
欺诈识别
金融公司有义务保证其用户的最高安全级别。公司面临的主要挑战是找到一个很好的欺诈检测系统,罪犯总是会采用新的方法并设置新的陷阱。只有称职的数据科学家才能创建完美的算法来检测和预防用户行为异常或正在进行的各种欺诈工作流程。例如,针对特定用户的不寻常金融购买警报或大量现金提款将导致阻止这些操作,直到客户确认为止。在股票市场中,机器学习工具可以识别交易数据中的模式,这可能会指示操纵并提醒员工进行调查。然而,这种算法最大的优势在于自我教学的能力,随着时间的推移变得越来越有效和智能化。
消费者分析
实时分析还有助于更好地了解客户和有效的个性化。先进的机器学习算法和客户情绪分析技术可以从客户行为,社交媒体互动,他们的反馈和意见中获得见解,并改善个性化并提高利润。由于数据量巨大,只有经验丰富的数据科学家才能精确分解。
算法交易
这个领域可能受实时分析的影响最大,因为每秒都会受到影响。根据分析传统和非传统数据的最新信息,金融机构可以做出实时有利的决策。而且由于这些数据通常只在短时间内才有价值,因此在这个领域具有竞争力意味着使用最快的方法分析数据。
在此领域结合实时和预测分析时,另一个预期会开启。过去,金融公司不得不聘用能够开发统计模型并使用历史数据来创建预测市场机会的交易算法的数学家。然而,今天人工智能提供了使这一过程更快的技术,而且特别重要的是 - 不断改进。

因此,数据科学和人工智能在交易领域进行了革命,启动了算法交易策略。世界上大多数交易所都使用计算机,根据算法和正确策略制定决策,并考虑到新数据。 人工智能无限处理大量信息,包括推文,财务指标,新闻和书籍数据,甚至电视节目。 因此,它理解当今的全球趋势并不断提高对金融市场的预测。
总而言之,实时和预测分析显着改变了不同金融领域的状况。 通过Hadoop,NoSQL和Storm等技术,传统和非传统数据集以及最精确的算法,数据工程师正在改变财务用于工作的方式。
深度个性化和定制
企业认识到,在当今市场竞争的关键步骤之一是通过与客户建立高质量的个性化关系来提高参与度。 这个想法是分析数字客户体验,并根据客户的兴趣和偏好对其进行修改。 人工智能在理解人类语言和情感方面取得重大进展,从而将客户个性化提升到一个全新的水平。 数据工程师还可以建立模型,研究消费者的行为并发现客户需要财务建议的情况。 预测分析工具和高级数字交付选项的结合可以帮助完成这项复杂的任务,在最恰当的时机指导客户获得最佳财务解决方案,并根据消费习惯,社交人口趋势,位置和其他偏好建议个性化服务。
结论
对于金融机构来说,数据科学技术的使用提供了一个从竞争中脱颖而出并重塑其业务的巨大机会。大量不断变化的财务数据造成了将机器学习和AI工具引入业务不同方面的必要性。
我们认为,我们主要关注金融领域的7大数据科学用例,但还有很多其他值得一提的。 如果您有任何进一步的想法,请在评论部分分享您的想法。

『叁』 借钱难吗看互联网金融如何通过大数据超越银行

伴随着互联网的快速发展,互联网金融已经从一个新生事物变成了人人都已经习惯的生活必需品,互联网金融伴随着手机等移动智能终端走进了千家万户。但是,互联网金融离马云说的:“银行不去改变,我们就去改变银行”还有着相当大的距离,在相当长的一个历史阶段里面,互联网金融依然会扮演着银行有益补充的角色,而获客难题也成为了一直以来互联网金融发展的一个障碍,今天我们就来讨论一下,金融科技如何破解互联网金融的获客难题,如何真正实现大数据金融?

大数据在互联网金融领域的应用十分广泛,除了我们上面论述的反羊毛、风险控制、反欺诈等领域之外,在互联网金融的失联修复、账款催收、身份识别等等领域,大数据同样发挥着不可替代的作用。

在大数据时代,困扰互联网金融的问题正在被大数据一点点解决掉,如何用好大数据的武器将会成为互联网金融发展的重要核心,相信在大数据的帮助下,互联网金融将会向着更好地方向发展。

经济视角观天下 微信公众号【江瀚视野观察】ID:jianghanview

『肆』 企业大数据实战案例

企业大数据实战案例

一、家电行业

以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。

目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。

基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。

那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。

一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。

该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。

二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。

该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。

二、快消行业

以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。

此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。

实现过程:

1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;

2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;

3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。

因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。

三、金融行业

对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。

在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。

以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货

『伍』 大数据失败案例提醒 8个不能犯的错误

大数据失败案例提醒:8个不能犯的错误
近年来,大数据旋风以“迅雷不及掩耳之势”席卷全球,不仅是信息领域,经济、政治、社会等诸多领域都“磨刀霍霍”向大数据,准备在其中逐得一席之地。然而,很多公司在迈入大数据领域后遭遇“滑铁卢”。在此,本文盘点了一系列大数据失败项目,深究其原因,具有警示意义。
对数据过于相信2008年,Google第一次开始预测流感就取得了很好的效果,比美国疾病预防控制中心提前两礼拜预测到了流感的爆发。但是,几年之后,Google的预测比实际情况(由防控中心根据全美就诊数据推算得出)高出了50%。媒体过于渲染了Google的成功,出于好奇目的而搜索相关关键词的人越来越多,从而导致了数据的扭曲。低估大数据复杂程度在美国有几个互联网金融公司专做中小企业贷款。但是中小企业贷款涉及的数据更复杂,而且中小企业涉及到整个行业非常特殊的一些数据,比如非标准的财务报表和不同行业、不同范式的合同,他们没有很专业的知识,是很难理解或者很难有时间把它准确挖掘出来。当时大数据团队想用一个很完美的模型把所有的问题都解决掉,比如把市场和信贷的解决方案全部用一个模型来解决,但因为数据的复杂程度,最后证明这种方法是失败的,而且90%的时间都在做数据清理。这就说明,想通过大数据技术一下子解决所有的问题是很难成功的,而是要用抽丝剥茧、循序渐进的方式。管理层的惰性某家旅游公司系统通过web日志数据的挖掘来提升客户洞察。结果证明,用户在浏览网站之后,随后的消费行为模式与管理层所认为的不一致。当团队汇报此事时,管理层认为不值一提。但是,该团队并没有放弃,并通过严密的A/B测试,回击了管理层的轻视。这个案例的最终结果,不是每个CIO都能期盼的。但是,有一点是可以确定的:做好和管理层打交道的准备,让他们充分理解大数据是什么以及相应的价值。应用场景选择错误一家保险公司想了解日常习惯和购买生命保险意愿之间的关联性。由于随后觉得习惯太过于宽泛,该公司将调查范畴限定到是否吸烟上。但是,工作仍然没有实质进展。不到半年,他们就终止了整个项目,因为一直未能发现任何有价值的信息。这个项目的失败是由于问题的复杂性。在抽烟与否之间,该公司没有注意到还有大片灰色地带:很多人是先抽烟而后又戒烟了。在将问题简单化动机的驱动下,这个部分被忽略了。问题梳理不够全面一家全球性公司的大数据团队发现了很多深刻的洞察,并且计划通过云让全公司共享。结果这个团队低估了效率方面的损耗,由于网络拥塞的问题,无法满足全球各个分支顺畅提交数据运行分析的需求。该公司应该仔细思考下如何支撑大数据项目,梳理所需的技能并协调各IT分支的力量进行支持。由于网络、安全或基础设施的问题,已经有太多的大数据项目栽了跟头。缺乏大数据分析技能一家零售公司的首席执行官不认同亚马逊规模化、扁平化的服务模式,因此让CIO构建一个客户推荐引擎。项目最初的规划是半年为期,但是团队很快认识到诸如协同过滤(collaborativefiltering)之类的概念无法实现。为此,一个团队成员提出做一个“假的推荐引擎”,把床单作为唯一的推荐产品。这个假引擎的工作逻辑是:买搅拌机的人会买床单,买野营书籍的人会买床单,买书的人会买床单。就是如此,床单是唯一的、默认的推荐品。尽管可笑,这个主意其实并不坏,默认的推荐也能给企业带来销售上的提升。但是,由于大数据相关技能的缺失,真正意义上的引擎未能实现。提出了错误的问题一家全球领先的汽车制造商决定开展一个情感分析项目,为期6个月,耗资1千万美元。项目结束之后,该厂商将结果分享给经销商并试图改变销售模式。然后,所得出的结果最终被证明是错误的。项目团队没有花足够的时间去了解经销商所面临的问题或业务建议,从而导致相关的分析毫无价值。应用了错误的模型。某银行为判断电信行业的客户流失情况,从电信业聘请了一位专家,后者也很快构建了评估用户是否即将流失的模型。当时已进入评测验证的最后阶段,模型很快就将上线,而银行也开始准备给那些被认为即将流失的客户发出信件加以挽留。但是,为了保险起见,一位内部专家被要求对模型进行评估。这位银行业专家很快发现了令人惊奇的事情:不错,那些客户的确即将流失,但并不是因为对银行的服务不满意。他们之所以转移财产(有时是悄无声息的),是因为感情问题——正在为离婚做准备。可见,了解模型的适用性、数据抽象的级别以及模型中隐含的细微差别,这些都是非常具有挑战性的。管理层阻力尽管数据当中包含大量重要信息,但Fortune Knowledge公司发现有62%的企业领导者仍然倾向于相信自己的直觉,更有61%的受访者认为领导者的实际洞察力在决策过程中拥有高于数据分析结论的优先参考价值。选择错误的使用方法企业往往会犯下两种错误,要么构建起一套过分激进、自己根本无法驾驭的大数据项目,要么尝试利用传统数据技术处理大数据问题。无论是哪种情况,都很有可能导致项目陷入困境。提出错误的问题数据科学非常复杂,其中包含专业知识门类(需要深入了解银行、零售或者其它行业的实际业务状况);数学与统计学经验以及编程技能等等。很多企业所雇用的数据科学家只了解数学与编程方面的知识,却欠缺最重要的技能组成部分——对相关行业的了解,因此最好能从企业内部出发寻找数据科学家。缺乏必要的技能组合这项理由与“提出错误的问题”紧密相关。很多大数据项目之所以陷入困境甚至最终失败,正是因为不具备必要的相关技能。通常负责此类项目的都是IT技术人员——而他们往往无法向数据提出足以指导决策的正确问题。与企业战略存在冲突要让大数据项目获得成功,大家必须摆脱将其作为单一“项目”的思路、真正把它当成企业使用数据的核心方式。问题在于,其它部门的价值或者战略目标有可能在优先级方面高于大数据,这种冲突往往会令我们有力无处使。大数据孤岛大数据供应商总爱谈论“数据湖”或者“数据中枢”,但事实上很多企业建立起来的只能算是“数据水坑儿”,各个水坑儿之间存在着明显的边界——例如市场营销数据水坑儿与制造数据水坑儿等等。需要强调的是,只有尽量缓和不同部门之间的隔阂并将各方的数据流汇总起来,大数据才能真正发挥自身价值。在大数据技术之外遇到了其它意外状况。数据分析仅仅是大数据项目当中的组成部分之一,访问并处理数据的能力同样重要。除此之外,常常被忽略的因素还有网络传输能力限制与人员培训等等。回避问题有时候我们可以肯定或者怀疑数据会迫使自身做出一些原本希望尽量避免的运营举措,例如制药行业之所以如此排斥情感分析机制、是因为他们不希望将不良副作用报告给美国食品药品管理局并承担随之而来的法律责任。在这份理由清单中,大家可能已经发现了一个共同的主题:无论我们如何高度关注数据本身,都会有人为因素介入进来。即使我们努力希望获取对数据的全面控制权,大数据处理流程最终还是由人来打理的,其中包括众多初始决策——例如选择哪些数据进行收集与分析、向分析结论提出哪些问题等等。为防止大数据项目遭遇失败,引入迭代机制是非常必要的。使用灵活而开放的数据基础设施,保证其允许企业员工不断调整实际方案、直到他们的努力获得理想的回馈,最终以迭代为武器顺利迈向大数据有效使用的胜利彼岸。

『陆』 数据安全有哪些案例

“大数据时代,在充分挖掘和发挥大数据价值同时,解决好数据安全与个人信息保护等问题刻不容缓。”中国互联网协会副秘书长石现升在贵阳参会时指出。

员工监守自盗数亿条用户信息

今年初,公安部破获了一起特大窃取贩卖公民个人信息案。

被窃取的用户信息主要涉及交通、物流、医疗、社交和银行等领域数亿条,随后这些用户个人信息被通过各种方式在网络黑市进行贩卖。警方发现,幕后主要犯罪嫌疑人是发生信息泄漏的这家公司员工。

业内数据安全专家评价称,这起案件泄露数亿条公民个人信息,其中主要问题,就在于内部数据安全管理缺陷。

国外情况也不容乐观。2016年9月22日,全球互联网巨头雅虎证实,在2014年至少有5亿用户的账户信息被人窃取。窃取的内容涉及用户姓名、电子邮箱、电话号码、出生日期和部分登陆密码。

企业数据信息泄露后,很容易被不法分子用于网络黑灰产运作牟利,内中危害轻则窃财重则取命,去年8月,山东高考生徐玉玉被电信诈骗9900元学费致死案等数据安全事件,就可见一斑。
去年7月,微软Window10也因未遵守欧盟“安全港”法规,过度搜集用户数据而遭到法国数据保护监管机构CNIL的发函警告。

上海社会科学院互联网研究中心发布的《报告》指出,随着数据资源商业价值凸显,针对数据的攻击、窃取、滥用和劫持等活动持续泛滥,并呈现出产业化、高科技化和跨国化等特性,对国家和数据生态治理水平,以及组织的数据安全能力都提出了全新挑战。

当前,重要商业网站海量用户数据是企业核心资产,也是民间黑客甚至国家级攻击的重要对象,重点企业数据安全管理更是面临严峻压力。

企业、组织机构等如何提升自身数据安全能力?

企业机构亟待提升数据安全管理能力

“大数据安全威胁渗透在数据生产、流通和消费等大数据产业的各个环节,包括数据源、大数据加工平台和大数据分析服务等环节的各类主体都是威胁源。”上海社科院信息所主任惠志斌向记者分析称,大数据安全事件风险成因复杂交织,既有外部攻击,也有内部泄密,既有技术漏洞,也有管理缺陷,既有新技术新模式触发的新风险,也有传统安全问题的持续触发。

5月27日,中国互联网协会副秘书长石现升称,互联网日益成为经济社会运行基础,网络数据安全意识、能力和保护手段正面临新挑战。

今年6月1日即将施行的《网络安全法》针对企业机构泄露数据的相关问题,重点做了强调。法案要求各类组织应切实承担保障数据安全的责任,即保密性、完整性和可用性。另外需保障个人对其个人信息的安全可控。

石现升介绍,实际早在2015年国务院就发布过《促进大数据发展行动纲要》,就明确要“健全大数据安全保障体系”、“强化安全支撑,提升基础设施关键设备安全可靠水平”。

“目前,很多企业和机构还并不知道该如何提升自己的数据安全管理能力,也不知道依据什么标准作为衡量。”一位业内人士分析称,问题的症结在于国内数据安全管理尚处起步阶段,很多企业机构都没有设立数据安全评估体系,或者没有完整的评估参考标准。

“大数据安全能力成熟度模型”已提国标申请

数博会期间,记者从“大数据安全产业实践高峰论坛”上了解到,为解决此问题,全国信息安全标准化技术委员会等职能部门与数据安全领域的标准化专家学者和产业代表企业协同,着手制定一套用于组织机构数据安全能力的评估标准——《大数据安全能力成熟度模型》,该标准是基于阿里巴巴提出的数据安全成熟度模型(Data Security Maturity Model, DSMM)进行制订。

阿里巴巴集团安全部总监郑斌介绍DSMM。

作为此标准项目的牵头起草方,阿里巴巴集团安全部总监郑斌介绍说,该标准是阿里巴巴基于自身数据安全管理实践经验成果DSMM拟定初稿,旨在与同行业分享阿里经验,提升行业整体安全能力。

“互联网用户的信息安全从来都不是某一家公司企业的事。”郑斌称,《大数据安全能力成熟度模型》的制订还由中国电子技术标准化研究院、国家信息安全工程技术研究中心、中国信息安全测评中心、公安三所、清华大学和阿里云计算有限公司等业内权威数据安全机构、学术单位企业等共同合作提出意见。

『柒』 从e租宝案例中暴露出互联网金融的哪些风险

首先可以看出平台的选择的重要性,请勿只相信广告,不是推广做得好的平台就是大型平台可靠平台,投资之前一定要先多重调查资讯,尤其是大额金额投资更要注意,鑫风口有很多这样知识

『捌』 什么是互联网金融能举个例子吗

互联网金融是传统金融行业与互联网精神相结合的新兴领域。互联网"开放、平等、协作、分享"的精神往传统金融业态渗透,对人类金融模式产生根本影响,具备互联网精神的金融业态统称为互联网金融。互联网金融与传统金融的区别不仅仅在于金融业务所采用的媒介不同,更重要的在于金融参与者深谙互联网“开放、平等、协作、分享”的精髓,通过互联网、移动互联网等工具,使得传统金融业务具备透明度更强、参与度更高、协作性更好、中间成本更低、操作上更便捷等一系列特征。

举例:

众筹

众筹大意为大众筹资或群众筹资,是指用团购预购的形式,向网友募集项目资金的模式。本意众筹是利用互联网和SNS传播的特性,让创业企业、艺术家或个人对公众展示他们的创意及项目,争取大家的关注和支持,进而获得所需要的资金援助。众筹平台的运作模式大同小异——需要资金的个人或团队将项目策划交给众筹平台,经过相关审核后,便可以在平台的网站上建立属于自己的页面,用来向公众介绍项目情况。

第三方支付

第三方支付(Third-PartyPayment)狭义上是指具备一定实力和信誉保障的非银行机构,借助通信、计算机和信息安全技术,采用与各大银行签约的方式,在用户与银行支付结算系统间建立连接的电子支付模式。

根据央行2010年在《非金融机构支付服务管理办法》中给出的非金融机构支付服务的定义,从广义上讲第三方支付是指非金融机构作为收、付款人的支付中介所提供的网络支付、预付卡、银行卡收单以及中国人民银行确定的其他支付服务。第三方支付已不仅仅局限于最初的互联网支付,而是成为线上线下全面覆盖,应用场景更为丰富的综合支付工具。

『玖』 大数据和人工智能在互联网金融领域有哪些应用


数据从四个方面改变了金融机构传统的数据运作方式,从而实现了巨大的商业价值。这四个方面(“四个C”)包括:数据质量的兼容性
(Compatibility)、数据运用的关联性(Connectedness)、数据分析的成本(Cost)以及数据价值的转化
(Capitalization)。


大数据在金融业的应用场景正在逐步拓展。在海外,大数据已经在金融行业的风险控制、运营管理、销售支持和商业模式创新等领域得到了全面尝试。在国内,金
融机构对大数据的应用还基本处于起步阶段。数据整合和部门协调等关键环节的挑战仍是阻碍金融机构将数据转化为价值的主要瓶颈。


数据技术与数据经济的发展是持续实现大数据价值的支撑。深度应用正在将传统IT从“后端”不断推向“前台”,而存量架构与创新模块的有效整合是传统金融
机构在技术层面所面临的主要挑战。此外,数据生态的发展演进有其显著的社会特征。作为其中的一员,金融机构在促进数据经济的发展上任重道远。

为了驾驭大数据,国内金融机构要在技术的基础上着重引入以价值为导向的管理视角,最终形成自上而下的内嵌式变革。其中的三个关键点(“TMT”)包括:团队(Team)、机制(Mechanism)和思维(Thinking)。

1.价值导向与内嵌式变革—BCG对大数据的理解

“让数据发声!”—随着大数据时代的来临,这个声音正在变得日益响亮。为了在喧嚣背后探寻本质,我们的讨论将从大数据的定义开始。

1.1成就大数据的“第四个V”

大数据是什么?在这个问题上,国内目前常用的是“3V”定义,即数量(Volume)、速度(Velocity)和种类(Variety)。


虽然有着这样的定义,但人们从未停止讨论什么才是成就大数据的“关键节点”。人们热议的焦点之一是“到底多大才算是大数据?”其实这个问题在“量”的层
面上并没有绝对的标准,因为“量”的大小是相对于特定时期的技术处理和分析能力而言的。在上个世纪90年代,10GB的数据需要当时计算能力一流的计算机
处理几个小时,而这个量现在只是一台普通智能手机存储量的一半而已。在这个层面上颇具影响力的说法是,当“全量数据”取代了“样本数据”时,人们就拥有了
大数据。


另外一个成为讨论焦点的问题是,今天的海量数据都来源于何处。在商业环境中,企业过去最关注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系统中的数据。这些数据的共性在于,它们都是由一个机构有意识、有目的地收集到的数据,而且基本上都是结构化数据。随着互联网的深
入普及,特别是移动互联网的爆发式增长,人机互动所产生的数据已经成为了另一个重要的数据来源,比如人们在互联网世界中留下的各种“数据足迹”。但所有这
些都还不是构成“大量数据”的主体。机器之间交互处理时沉淀下来的数据才是使数据量级实现跨越式增长的主要原因。“物联网”是当前人们将现实世界数据化的
最时髦的代名词。海量的数据就是以这样的方式源源不断地产生和积累。

“3V”的定义专注于对数据本身的特征进行描述。然而,是否是量级庞大、实时传输、格式多样的数据就是大数据?

BCG认为,成就大数据的关键点在于“第四个V”,即价值(Value)。当量级庞大、实时传输、格式多样的全量数据通过某种手段得到利用并创造出商业价值,而且能够进一步推动商业模式的变革时,大数据才真正诞生。

1.2变革中的数据运作与数据推动的内嵌式变革

多元化格式的数据已呈海量爆发,人类分析、利用数据的能力也日益精进,我们已经能够从大数据中创造出不同于传统数据挖掘的价值。那么,大数据带来的“大价值”究竟是如何产生的?


无论是在金融企业还是非金融企业中,数据应用及业务创新的生命周期都包含五个阶段:业务定义需求;IT部门获取并整合数据;数据科学家构建并完善算法与
模型;IT发布新洞察;业务应用并衡量洞察的实际成效。在今天的大数据环境下,生命周期仍维持原样,而唯一变化的是“数据科学家”在生命周期中所扮演的角
色。大数据将允许其运用各种新的算法与技术手段,帮助IT不断挖掘新的关联洞察,更好地满足业务需求。


因此,BCG认为,大数据改变的并不是传统数据的生命周期,而是具体的运作模式。在传统的数据基础和技术环境下,这样的周期可能要经历一年乃至更长的时
间。但是有了现在的数据量和技术,机构可能只需几周甚至更短的时间就能走完这个生命周期。新的数据运作模式使快速、低成本的试错成为可能。这样,商业机构
就有条件关注过去由于种种原因而被忽略的大量“小机会”,并将这些“小机会”累积形成“大价值”。

具体而言,与传统的数据应用相比,大数据在四个方面(“4C”)改变了传统数据的运作模式,为机构带来了新的价值。

1.2.1数据质量的兼容性(Compatibility):大数据通过“量”提升了数据分析对“质”的宽容度


在“小数据”时代,数据的获取门槛相对较高,这就导致“样本思维”占据统治地位。人们大多是通过抽样和截取的方式来捕获数据。同时,人们分析数据的手段
和能力也相对有限。为了保证分析结果的准确性,人们通常会有意识地收集可量化的、清洁的、准确的数据,对数据的“质”提出了很高的要求。而在大数据时代,
“全量思维”得到了用武之地,人们有条件去获取多维度、全过程的数据。但在海量数据出现后,数据的清洗与验证几乎成为了不可能的事。正是这样的困境催生了
数据应用的新视角与新方法。类似于分布式技术的新算法使数据的“量”可以弥补“质”的不足,从而大大提升了数据分析对于数据质量的兼容能力。

1.2.2数据运用的关联性(Connectedness):大数据使技术与算法从“静态”走向“持续”


在大数据时代,对“全量”的追求使“实时”变得异常重要,而这一点也不仅仅只体现在数据采集阶段。在云计算、流处理和内存分析等技术的支撑下,一系列新
的算法使实时分析成为可能。人们还可以通过使用持续的增量数据来优化分析结果。在这些因素的共同作用下,人们一贯以来对“因果关系”的追求开始松动,而
“相关关系”正在逐步获得一席之地。

1.2.3数据分析的成本(Cost):大数据降低了数据分析的成本门槛


大数据改变了数据处理资源稀缺的局面。过去,数据挖掘往往意味着不菲的投入。因此,企业希望能够从数据中发掘出“大机会”,或是将有限的数据处理资源投
入到有可能产生大机会的“大客户、大项目”中去,以此获得健康的投入产出比。而在大数据时代,数据处理的成本不断下降,数据中大量存在的“小机会”得见天
日。每个机会本身带来的商业价值可能并不可观,但是累积起来就会实现质的飞跃。所以,大数据往往并非意味着“大机会”,而是“大量机会”。

1.2.4数据价值的转化(Capitalization):大数据实现了从数据到价值的高效转化


在《互联网金融生态系统2020:新动力、新格局、新战略》报告中,我们探讨了传统金融机构在大变革时代所需采取的新战略思考框架,即适应型战略。采取
适应型战略有助于企业构筑以下五大优势:试错优势、触角优势、组织优势、系统优势和社会优势,而大数据将为金融机构建立这些优势提供新的工具和动力。从数
据到价值的转化与机构的整体转型相辅相成,“内嵌式变革”由此而生。


例如,金融机构传统做法中按部就班的长周期模式(从规划、立项、收集数据到分析、试点、落地、总结)不再适用。快速试错、宽进严出成为了实现大数据价值
的关键:以低成本的方式大量尝试大数据中蕴藏的海量机会,一旦发现某些有价值的规律,马上进行商业化推广,否则果断退出。此外,大数据为金融机构打造“触
角优势”提供了新的工具,使其能够更加灵敏地感知商业环境,更加顺畅地搭建反馈闭环。此外,数据的聚合与共享为金融机构搭建生态系统提供了新的场景与动
力。

2.应用场景与基础设施—纵览海内外金融机构的大数据发展实践


金融行业在发展大数据能力方面具有天然优势:受行业特性影响,金融机构在开展业务的过程中积累了海量的高价值数据,其中包括客户身份、资产负债情况、资
金收付交易等数据。以银行业为例,其数据强度高踞各行业之首—银行业每创收100万美元,平均就会产生820GB的数据。

2.1大数据的金融应用场景正在逐步拓展

大数据发出的声音已经在金融行业全面响起。作为行业中的“巨无霸”,银行业与保险业对大数据的应用尤其可圈可点。

2.1.1海外实践:全面尝试

2.1.1.1银行是金融行业中发展大数据能力的“领军者”


在发展大数据能力方面,银行业堪称是“领军者”。纵观银行业的六个主要业务板块(零售银行、公司银行、资本市场、交易银行、资产管理、财富管理),每个
业务板块都可以借助大数据来更深入地了解客户,并为其制定更具针对性的价值主张,同时提升风险管理能力。其中,大数据在零售银行和交易银行业务板块中的应
用潜力尤为可观。


BCG通过研究发现,海外银行在大数据能力的发展方面基本处于三个阶段:大约三分之一的银行还处在思考大数据、理解大数据、制定大数据战略及实施路径的
起点阶段。还有三分之一的银行向前发展到了尝试阶段,也就是按照规划出的路径和方案,通过试点项目进行测验,甄选出许多有价值的小机会,并且不停地进行试
错和调整。而另外三分之一左右的银行则已经跨越了尝试阶段。基于多年的试错经验,他们已经识别出几个较大的机会,并且已经成功地将这些机会转化为可持续的
商业价值。而且这些银行已经将匹配大数据的工作方式嵌入到组织当中。他们正在成熟运用先进的分析手段,并且不断获得新的商业洞察。


银行业应用举例1:将大数据技术应用到信贷风险控制领域。在美国,一家互联网信用评估机构已成为多家银行在个人信贷风险评估方面的好帮手。该机构通过分
析客户在各个社交平台(如Facebook和Twitter)留下的数据,对银行的信贷申请客户进行风险评估,并将结果卖给银行。银行将这家机构的评估结
果与内部评估相结合,从而形成更完善更准确的违约评估。这样的做法既帮助银行降低了风险成本,同时也为银行带来了风险定价方面的竞争优势。


相较于零售银行业务,公司银行业务对大数据的应用似乎缺乏亮点。但实际上,大数据在公司银行业务的风险领域正在发挥着前所未有的作用。在传统方法中,银
行对企业客户的违约风险评估多是基于过往的营业数据和信用信息。这种方式的最大弊端就是缺少前瞻性,因为影响企业违约的重要因素并不仅仅只是企业自身的经
营状况,还包括行业的整体发展状况,正所谓“覆巢之下,焉有完卵”。但要进行这样的分析往往需要大量的资源投入,因此在数据处理资源稀缺的环境下无法得到
广泛应用,而大数据手段则大幅减少了此类分析对资源的需求。西班牙一家大型银行正是利用大数据来为企业客户提供全面深入的信用风险分析。该行首先识别出影
响行业发展的主要因素,然后对这些因素一一进行模拟,以测试各种事件对其客户业务发展的潜在影响,并综合评判每个企业客户的违约风险。这样的做法不仅成本
低,而且对风险评估的速度快,同时显著提升了评估的准确性。


银行业应用举例2:用大数据为客户制定差异化产品和营销方案。在零售银行业务中,通过数据分析来判断客户行为并匹配营销手段并不是一件新鲜事。但大数据
为精准营销提供了广阔的创新空间。例如,海外银行开始围绕客户的“人生大事”进行交叉销售。这些银行对客户的交易数据进行分析,由此推算出客户经历“人生
大事”的大致节点。人生中的这些重要时刻往往能够激发客户对高价值金融产品的购买意愿。一家澳大利亚银行通过大数据分析发现,家中即将有婴儿诞生的客户对
寿险产品的潜在需求最大。通过对客户的银行卡交易数据进行分析,银行很容易识别出即将添丁的家庭:在这样的家庭中,准妈妈会开始购买某些药品,而婴儿相关
产品的消费会不断出现。该行面向这一人群推出定制化的营销活动,获得了客户的积极响应,从而大幅提高了交叉销售的成功率。


客户细分早已在银行业得到广泛应用,但细分维度往往大同小异,包括收入水平、年龄、职业等等。自从开始尝试大数据手段之后,银行的客户细分维度出现了突
破。例如,西班牙的一家银行从Facebook和Twitter等社交平台上直接抓取数据来分析客户的业余爱好。该行把客户细分为常旅客、足球爱好者、高
尔夫爱好者等类别。通过分析,该行发现高尔夫球爱好者对银行的利润度贡献最高,而足球爱好者对银行的忠诚度最高。此外,通过分析,该行还发现了另外一个小
客群:“败家族”,即财富水平不高、但消费行为奢侈的人群。这个客群由于人数不多,而且当前的财富水平尚未超越贵宾客户的门槛,因此往往被银行所忽略。但
分析显示这一人群能够为银行带来可观的利润,而且颇具成长潜力,因此该行决定将这些客户升级为贵宾客户,深入挖掘其潜在价值。


在对公业务中,银行同样可以借助大数据形成更有价值的客户细分。例如,在BCG与一家加拿大银行的合作项目中,项目组利用大数据分析技术将所有公司客户
按照行业和企业规模进行细分,一共建立了上百个细分客户群。不难想象,如果没有大数据的支持,这样深入的细分是很难实现的。然后,项目组在每个细分群中找
出标杆企业,分析其银行产品组合,并将该细分群中其他客户的银行产品组合与标杆企业进行比对,从而识别出差距和潜在的营销机会。项目组将这些分析结果与该
行的对公客户经理进行分享,帮助他们利用这些发现来制定更具针对性的销售计划和话术,并取得了良好的效果。客户对这种新的销售方式也十分欢迎,因为他们可
以从中了解到同行的财务状况和金融安排,有助于对自身的行业地位与发展空间进行判断。


银行业应用举例3:用大数据为优化银行运营提供决策基础。大数据不仅能在前台与中台大显身手,也能惠及后台运营领域。在互联网金融风生水起的当
下,“O2O”(OnlineToOffline)成为了银行的热点话题。哪些客户适合线上渠道?哪些客户不愿“触网”?BCG曾帮助西班牙一家银行通过
大数据技术应用对这些问题进行了解答。项目组对16个既可以在网点也可以在网络与移动渠道上完成的关键运营活动展开分析,建立了12个月的时间回溯深度,
把客户群体和运营活动按照网点使用强度以及非网点渠道使用潜力进行细分。分析结果显示,大约66%的交易活动对网点的使用强度较高,但同时对非网点渠道的
使用潜力也很高,因此可以从网点迁移到网络或移动渠道。项目组在客户细分中发现,年轻客户、老年客户以及高端客户在运营活动迁移方面潜力最大,可以优先作
为渠道迁徙的对象。通过这样的运营调整,大数据帮助银行在引导客户转移、减轻网点压力的同时保障了客户体验。


BCG还曾利用专有的大数据分析工具NetworkMax,帮助一家澳大利亚银行优化网点布局。虽然银行客户的线上活动日渐增多,但金融业的铁律在互联
网时代依然适用,也就是说在客户身边设立实体网点仍然是金融机构的竞争优势。然而,网点的运营成本往往不菲,如何实现网点资源的价值最大化成为了每家银行
面临的问题。在该项目中,项目组结合银行的内部数据(包括现有的网点分布和业绩状况等)和外部数据(如各个地区的人口数量、人口结构、收入水平等),对
350多个区域进行了评估,并按照主要产品系列为每个区域制定市场份额预测。项目组还通过对市场份额的驱动因素进行模拟,得出在现有网点数量不变的情况下
该行网点的理想布局图。该行根据项目组的建议对网点布局进行了调整,并取得了良好的成效。这个案例可以为许多银行带来启示:首先,银行十分清楚自身的网点
布局,有关网点的经营业绩和地址的信息全量存在于银行的数据库中。其次,有关一个地区的人口数量、人口结构、收入水平等数据都是可以公开获取的数据。通过
应用大数据技术来把这两组数据结合在一起,就可以帮助银行实现网点布局的优化。BCG基于大数据技术而研发的Network
Max正是用来解决类似问题的工具。


银行业应用举例4:创新商业模式,用大数据拓展中间收入。过去,坐拥海量数据的银行考虑的是如何使用数据来服务其核心业务。而如今,很多银行已经走得更
远。他们开始考虑如何把数据直接变成新产品并用来实现商业模式,进而直接创造收入。例如,澳大利亚一家大型银行通过分析支付数据来了解其零售客户的“消费
路径”,即客户进行日常消费时的典型顺序,包括客户的购物地点、购买内容和购物顺序,并对其中的关联进行分析。该银行将这些分析结果销售给公司客户(比如
零售业客户),帮助客户更准确地判断合适的产品广告投放地点以及适合在该地点进行推广的产品。这些公司客户过去往往需要花费大量金钱向市场调研公司购买此
类数据,但如今他们可以花少得多的钱向自己的银行购买这些分析结果,而且银行所提供的此类数据也要可靠得多。银行通过这种方式获得了传统业务之外的收入。
更重要的是,银行通过这样的创新为客户提供了增值服务,从而大大增强了客户粘性。

『拾』 互联网金融的典型案例

四大商业银行推出的网上银行,腾讯推出的微信联合人保财险的手机端支付,淘宝联合天弘基金开发的余额宝,还有包括:易付宝、百付宝、快钱等多家第三方支付平台。
2013年全球私募股权与互联网金融相关的领域延续了过去几年的火热。仅5月份,Twitter宣布收购大数据创业公司Lucky Sort;IDG宣布两宗与虚拟货币相关的投资;微软拟出资10亿美元收购Nook Media公司数字资产。
2014年7月国内某P2P公司完成C轮融资,三年内累计融资金额超6亿元。C轮融资主投资方是兰亭投资,为新加坡主权投资公司淡马锡子公司。此外,前两轮投资方光速安振中国基金、红杉资本、凯鹏华盈中国基金都追加了投资 微金融又称微信金融 ,是2012年左右新兴的一种金融模式。即借助微信等典型的社交媒体平台,为用户提供相对理财,投资,贷款等规模较小的金融行为环境,一般情况下,指的是为中小微企业、创业者、个体工商户、小额投资者等提供的金融服务。日前有第三方平台发布了微信金融平台排名,以其中名列前位的“闪电借款”为例,2015年第三季度财报显示,其闪电借款平台7、8、9三个月撮合交易额分别有1.95亿、2.28亿、2.67亿,增长极其迅猛。
随着微金融信息服务体系的不断壮大,微金融信息服务的概念也在扩大,现在其最为准确的定义是:专门向小型和微型企业及中低收入阶层提供的,小额度的、时间短的、可持续循环的微金融产品和服务的活动。”
微金融信息服务的特点有两点:一是以中小微型企业以及贫困或中低收入群体为特定目标客户;二是由于客户有特殊性,它会有适合这样一些特定目标阶层客户的金融产品和服务。 以规模庞大的线下POS收单市场来说,越来越多的第三方支付企业对线下收单市场的拓展,未来线下支付将给整个综合支付市场格局带来重要影响。

阅读全文

与互联网金融大数据案例相关的资料

热点内容
劲胜精密股票代码 浏览:123
170泰铢兑多少人民币 浏览:55
中国邮政基金登录 浏览:354
企业贷款综合融资成本 浏览:308
挖财投资2019 浏览:878
梧桐树投资平台骗人 浏览:721
710多少人民币 浏览:967
融资问题现状分析 浏览:806
华信信托地址 浏览:865
单小铺融资 浏览:808
3月21号资金流入前二十名 浏览:577
捡人融资 浏览:548
买货币基金和余额宝 浏览:572
今日人民币对美元买入卖出价 浏览:273
登录我的基金001416 浏览:465
四平融资 浏览:624
渤海信托淮安 浏览:749
期货股票外汇 浏览:84
房企融资规模 浏览:701
在创业大街怎么找投资 浏览:946