❶ 國內量化交易平台哪家支持python等多門編程語言開發策略
你好,在金融量化交易領域,掘金量化交易平台可以支持多種主流編程語言的開發,包括python、R、Matlab, C, C++, C# ;可以滿足掌握不同編程語言的量化策略者的需求。
❷ 有沒有人在學python做量化交易的
Python做模型可以,但是具體的執行不行,太慢。
❸ 目前市面上的量化交易平台做到了什麼程度
量化交易,從18世紀開始,金融投資的先驅已經開始探索各種不同的投資方法,經過多年的進化,已經嘗試了從價值分析、風險套利到日間交易等不同的方向。
在當前中國資本市場的變化中,定量投資作為一種新興的中國市場投資方式,是現代量化投資理論和數理統計方法的運用,在海大歷史數據的各種「能帶來超額收益的使用計算機技術的高概率事件制定一個模型驗證的數量策略和治療這些規則和策略,和固化的策略來指導投資的嚴格執行,為了獲得可持續的穩定,高於平均水平的超額收益。
❹ 怎麼學習python量化交易
找一些含有Python量化分析、Python量化交易的教程,跟著學一學,如果自學難度大,可以報班學習,反正辦法總比困難多!
❺ python量化交易半個月可以學會嗎
比較難。
python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。
python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。
❻ 怎樣用 Python 寫一個股票自動交易的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一版步。對於股票的權散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
❼ 怎樣用 Python 寫一個股票自動交易的程序
你就是想找個軟體或者券商的介面去上傳交易指令,你前期的數據抓取和分析可能專python都寫好了,屬所以差這交易指令介面最後一步。對於股票的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。還有的辦法是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的,第三種就是走野路子,滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。還有一種更野的方法,就是找到這些軟體的關於交易指令的底層代碼並更改,我網路看到的,不知道是不是真的可行。。散戶就這樣,沒資金就得靠技術,不過我覺得T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
❽ python量化哪個平台可以回測模擬實盤還不要錢
Python量化投資框架:回測+模擬+實盤
Python量化投資 模擬交易 平台 1. 股票量化投資框架體系 1.1 回測 實盤交易前,必須對量化交易策略進行回測和模擬,以確定策略是否有效,並進行改進和優化。作為一般人而言,你能想到的,一般都有人做過了。回測框架也如此。當前小白看到的主要有如下五個回測框架: Zipline :事件驅動框架,國外很流行。缺陷是不適合國內市場。 PyAlgoTrade : 事件驅動框架,最新更新日期為16年8月17號。支持國內市場,應用python 2.7開發,最大的bug在於不支持3.5的版本,以及不支持強大的pandas。 pybacktest :以處理向量數據的方式進行回測,最新更新日期為2個月前,更新不穩定。 TradingWithPython:基於pybacktest,進行重構。參考資料較少。 ultra-finance:在github的項目兩年前就停止更新了,最新的項目在谷歌平台,無奈打不開網址,感興趣的話,請自行查看吧。 RQAlpha:事件驅動框架,適合A股市場,自帶日線數據。是米筐的回測開源框架,相對而言,個人更喜歡這個平台。 2 模擬 模擬交易,同樣是實盤交易前的重要一步。以防止類似於當前某券商的事件,半小時之內虧損上億,對整個股市都產生了惡劣影響。模擬交易,重點考慮的是程序的交易邏輯是否可靠無誤,數據傳輸的各種情況是否都考慮到。 當下,個人看到的,喜歡用的開源平台是雪球模擬交易,其次是wind提供的模擬交易介面。像優礦、米筐和聚寬提供的,由於只能在線上平台測試,不甚自由,並無太多感覺。 雪球模擬交易:在後續實盤交易模塊,再進行重點介紹,主要應用的是一個開源的easytrader系列。 Wind模擬交易:若沒有機構版的話,可以考慮應用學生免費版。具體模擬交易介面可參看如下鏈接:http://www.dajiangzhang.com/document 3 實盤 實盤,無疑是我們的終極目標。股票程序化交易,已經被限制。但對於萬能的我們而言,總有解決的辦法。當下最多的是破解券商網頁版的交易介面,或者說應用爬蟲爬去操作。對我而言,比較傾向於食燈鬼的easytrader系列的開源平台。對於機構用戶而言,由於資金量較大,出於安全性和可靠性的考慮,並不建議應用。 easytrader系列當前主要有三個組成部分: easytrader:提供券商華泰/傭金寶/銀河/廣發/雪球的基金、股票自動程序化交易,量化交易組件 easyquotation : 實時獲取新浪 / Leverfun 的免費股票以及 level2 十檔行情 / 集思路的分級基金行情 easyhistory : 用於獲取維護股票的歷史數據 easyquant : 股票量化框架,支持行情獲取以及交易 2. 期貨量化投資框架體系 一直待在私募或者券商,做的是股票相關的內容,對期貨這塊不甚熟悉。就根據自己所了解的,簡單總結一下。 2.1 回測 回測,貌似並沒有非常流行的開源框架。可能的原因有二:期貨相對股票而言,門檻較高,更多是機構交易,開源較少; 去年至今對期貨監管控制比較嚴,至今未放開,只能做些CTA的策略,另許多人興致泱泱吧。 就個人理解而言,可能wind的是一個相對合適的選擇。 2.2 模擬 + 實盤 vn.py是國內最為流行的一個開源平台。起源於國內私募的自主交易系統,2015年初啟動時只是單純的交易API介面的Python封裝。隨著業內關注度的上升和社區不斷的貢獻,目前已經一步步成長為一套全面的交易程序開發框架。如官網所說,該框架側重的是交易模塊,回測模塊並未支持。 能力有限,如果對相關框架感興趣的話,就詳看相關的鏈接吧。個人期望的是以RQAlpha為主搭建回測框架,以雪球或wind為主搭建模擬框架,用easy系列進行交易。
❾ python模擬瀏覽器,登錄銀行網頁交易平台,怎樣做
這個應該可以,剛試了一下,用戶名密碼錯誤會報500錯誤。這個網址沒使用cookie。#-*-coding:utf-8-*-importurllibimporturllib2post_url='post_headers={#'POST':'/elect/loginHTTP/1.1','Host':'uems.sysu.e.cn','User-Agent':'Mozilla/5.0(X11;Ubuntu;Linuxi686;rv:32.0)Gecko/20100101Firefox/32.0',#'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',#'Accept-Language':'en-US,en;q=0.5',#'Accept-Encoding':'gzip,deflate','Referer':',#'Connection':'keep-alive',}post_data={'_eventId':'submit','gateway':'true','lt':'','password':'12345','username':'apple',}post_data=urllib.urlencode(post_data)request=urllib2.Request(url=post_url,data=post_data,headers=post_headers)response=urllib2.urlopen(request)html=response.read()printhtml你的代碼,加上headers應該就可以。一般而言user-agent,referer是必須的
❿ 中國的 Python 量化交易工具鏈有哪些
萬得的Python API
同花順iFinD的Python API
掘金的量化平台
通聯數據的量化平台
QuickFix的Python API
Numpy/Scipy/Matplotlib/Pandas(量化分析)
IPyhon/Spyder(適合做量化分析的IDE環境)
Zipline(策略開發回測)
TuShare財經數據介面
恆生電子的量化贏家平台
米礦ricequant
海風的python交易平台:at_py