㈠ 用python能寫實時買賣的炒股軟體嗎
有專門的實時行情API介面,例如微盛的實時行情API介面,通過類似這樣的介面就可以接入了。
㈡ 怎樣用 Python 寫一個股票自動買賣的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一步。對內於股票容的散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
㈢ 怎樣用 Python 寫一個股票自動交易的程序
概率炒股法:
下面方法買漲不買跌,同時避免被套,缺點,手續費比較高,但完全可以吃完整個牛市,熊市不會被套。
用python獲取股票價格,如tushare,如果發現股票當天漲幅在大盤之上(2點30到2點50判斷),買入持有一天,下跌當天就別買,你可以用概率論方法,根據資金同時持有5支,10支或20支,這樣不怕停盤影響,理論上可以跑贏大盤。好處:避免人為沖動,缺點手續費高
還有一種是操作etf,如大盤50etf,etf300,中小板etf,創業板etf,當天2.30分判斷那個etf上漲就買入那支,買入漲幅最大的,不上漲什麼都不買,持有一天,第二天上午判斷一下,如果下跌超過2%賣掉。好處:不會踩地雷,缺點:漲隨大盤,我比較推薦這個方法,外圍的風險比較小。
具體的python程序我有,比上面復雜,有止贏止損位,資金管理,監視管理,我用在實盤當中,自動化下單也已解決。
我覺得程序的成敗不在一日之功,在於長期穩定賺錢,如運行十年,過多的數據分析也無意義,因為預測未來永遠是一個概率問題,不是百分之百確定的,如果你的程序能在長時間多次數上戰勝市場,你的程序就能趨向大數定理。
否則一時的回撤會讓你停止程序自動執行,而無法趨向大數定理中的穩定概率。
如果有一個程序能百分之99確定,那麼基本上肯定是分析了內幕交易數據,和徐x一樣,每次重倉一支股,這種手法應該是得到了內幕,也就不需要什麼程序來交易了。
巴菲特的交易模式實質上也是內幕交易的一種,因為他靠的是外在分析,實地考查,估計這是尋找內幕的手段,現在做大了,這種效果就不靈了,收益也下降了,美國經濟也下滑了,所以巴菲特的未來是必定是暗淡的,因為內幕交易的池子有限,資金量大了不好操作。
想想如果巴菲特生在蘇聯,印度,日本等等其他國家,他可能在街頭要飯,美國二戰後經濟環境加傾向內幕造就了他,而不是炒股技術有多神。所以巴菲特不屑於程序化交易。
巴菲特及不少美國式的股神實際上是倖存者偏差造成的,你想想蘇聯的股神在那裡?為什麼一個都沒有?(「沉默的數據」、「死人不會說話」)
我覺得未來真正能成股神必定是程序,不是人,因為一個好的程序策略可以用一輩子,實現長期穩定增長,當然前提是社會經濟環境穩定,不會出現類似蘇聯的動亂,也不會出現日本式的惡性通脹(對貨幣m2有點擔心)。
太多的股票讓股民每天沉浸在選股的游戲中,選股造就了券商的行情軟體,實際上很多數據都是沒有用的,所有的關鍵是按操作方法永遠執行下去才能趨向穩定概率,否則今天換一種明天換一種方法,今天按kdj,明天按macd,後天按boll,大後天按ddx,大大後天按自編指標,多條件選股,最後錢都交手續費或止損不及時被套牢了。這時券商收傭金的目的也就達到了,每年券商收的傭金比股市分紅要高。不管行情如何,只要多請幾個股評員,總有方向說對的,玩個概率游戲讓大家頻繁交易,券商的收入只會增不會降。所以千萬別信股評,玩的是概率游戲,如同預測硬幣的正反,請十個股評師必定有個能預測三次正確的神股評。你信這個神股評,後面可能是三次都不準,呵呵。所以券商和行情軟體總會在收盤或午休時彈出各種消息或評價,說實在的這種東西沒有一分錢的價值。可能早就寫好了上漲的說法是模塊a,下跌的說法是模板b,平市的說法是模板c,只是填上當天數據即可,都是八股文,都是馬後炮,一樣的事件上午說成是上漲理由,下午說成是下跌理由。
程序的策略經過測試後的關鍵在於穩定執行,長期穩定執行,長期長期穩定穩定執行執行,重要的事說三遍。
人性無法戰勝的弱點是執行力,小學生都懂的天天向上,每日進步,世間有幾人能做到?而穩定幾十年執行更是難上加難,如同背英語單詞一樣,理論上一天背一百個,一百天就可以一萬詞,但十年,二十年過去了,你可能還是三千詞以下。
用程序的目的就是百分之百執行到位,沒有折扣,真正戰勝人性的弱點,和t+1沒有關系。
另外通過一定方法降低手續費也可以使你的資金活得更久,如把上面的日模型改為周或月模型。
㈣ 怎樣用 Python 寫一個股票自動交易的程序
方法一
前期的數據抓取和分析可能python都寫好了,所以差這交易指令介面最後一版步。對於股票的權散戶,正規的法子是華寶,國信,興業這樣願意給介面的券商,但貌似開戶費很高才給這權利,而且只有lts,ctp這樣的c++介面,沒python版就需要你自己封裝。
方法二
是wind這樣的軟體也有直接的介面,支持部分券商,但也貴,幾萬一年是要的。
方法三
滑鼠鍵盤模擬法,很復雜的,就是模擬鍵盤滑鼠去操作一些軟體,比如券商版交易軟體和大智慧之類的。
方法四
就是找到這些軟體的關於交易指令的底層代碼並更改,不過T+1的規則下,預測准確率的重要性高於交易的及時性,花功夫做數據分析就好,交易就人工完成吧
㈤ 通達信什麼時候支持python量化交易
1、一個強大的N維數組對象Array;
2、比較成熟的(廣播)函數庫;
3、用於整回合C/C++和答Fortran代碼的工具包;
4、實用的線性代數、傅里葉變換和隨機數生成函數。numpy和稀疏矩陣運算包scipy配合使用更加方便。
㈥ Python 可期貨實盤交易嗎
國內期貨暫時沒有這個品種,期貨品種大多是同質化保質期較長的大宗商品期貨,包括有色金屬、鋼鐵、煤炭、貴金屬、豆類等等。
㈦ Python 做高頻交易系統適合哪個級別的延遲
比較現實的說是1ms級別的,如果你用python現成的library(urlib, request)接收數據至少有100us級別的延遲,一般交易系統需要多線程,python的GIL又會增加延遲,而且交易最忙的時候因為處理大量數據,python的GC更容易發生。用C或Cython寫核心部分不能提高很多,因為python的延遲是因為language design而不是computation造成的。當然這些問題可以改進,比如自己做一套tcp連接程序什麼的,不過這些恐怕並不比寫c++更容易。
另外上面的回答里的時間測試不一定有代表性,在一個簡單的loop測時間的話compiler和CPU會做很多你想不到的事情,結果會和真實值差很多。
㈧ 中國的 Python 量化交易工具鏈有哪些
萬得的Python
API,可以用來獲取實時數據、歷史數據以及下單交易
優點:萬得大而全
缺點:下單交易功能不是事件驅動(例如成交回報需要用戶去查詢,而不是主推)
同花順iFinD的Python
API,類似萬得的API
優點:比萬得便宜,同花順的服務態度很好(用戶提出新需求後很快就能給出確定的答復或者解決方案)
缺點:API連行情都不是主推的,更不要說下單交易了
掘金的量化平台
通聯數據的量化平台
QuickFix的Python
API(可以用來接國信、方正的FIX介面)
Numpy/Scipy/Matplotlib/Pandas(量化分析)
IPyhon/Spyder(適合做量化分析的IDE環境)
Zipline(策略開發回測)
㈨ 用python做量化交易要學多久
5個月。
python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。
python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。
(9)python實時交易擴展閱讀:
Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密 e正則logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。