導航:首頁 > 黃金交易 > 內燃機指標體系中主要有等幾類指標

內燃機指標體系中主要有等幾類指標

發布時間:2021-05-09 18:43:10

① 發動機的動力性能指標包括哪些

發動機的動力性能指標包括:


1、有效轉矩:指發動機通過曲軸或飛輪對外輸出的扭矩。


2、有效功率:指發動機通過曲軸或飛輪對外輸出的功率。


3、曲軸轉速:指發動機曲軸每分鍾的轉數,通常用n表示,單位為r/min。


發動機性能的主要指標有:轉速、功率、扭矩、燃油消耗率等等。這些指標,通常在汽車或發動機的說明書中予以標明。另外,還有一些相對性的指標,如:升功率、升扭矩、升質量、比質量等等,可在不同的發動機之間進行比較。


動力性:最大功率,最大扭矩,及其分別對應的轉速,外特性上扭矩隨轉數變化的曲線
經濟性:萬有特性上的BSFC,及怠速油耗

拓展資料:

油污清洗

首先,用濕布擦拭。先用濕布擦擦看能不能去除發動機室的污垢,如果這樣就能把發動機室清潔得很乾凈,那麼就不要用水清洗。

其次,如果只用濕布不能清除二手車發動機油污,不妨試用普通的洗潔劑擦拭。

如果以上兩種方法都試過之後,仍然無法清除二手車發動機油污,車主可以選擇用水清潔。清潔時先把不能沾水的零部件都包裹好,再用刷子、水及洗潔劑去除污垢。

若碰上難以徹底清除的污垢,就需要使用發動機專用的清潔劑。車主最好選擇泡沫式的清潔劑,因為泡沫停留在污垢表面的時間比較長,能分解污垢並使之浮出表面。但是這類清潔劑的化學作用通常都比較強烈,所以要用水沖洗起碼10分鍾才幹凈。

② 內燃機的動力性能和經濟性能為什麼要分為指示指標和有效指標2大類

指示指標是以工質對活塞所做的功為基準的,它不考慮動力輸出過程中機械摩擦和附件消耗等外來因素的影響,可以直接反應由燃燒到熱功轉換的工作循環進行的好壞;有效指標是以曲軸輸出功為計算基準的,用來直接評定發動機實際工作性能的優劣。

③ 內燃機的功率標定分為幾種

標定功率:國家標准規定,內燃機的功率標定按用途和使用特點分為四種。
15min功率內燃機允許連續運轉I5min的最大有效功率。適用於汽車、艦艇、坦克等用途的內燃機功率標定。
1h功率內燃機允許連續運轉1h的最大有效功率。適用於工業用拖拉機、工程機械、內燃機車、船舶等用途的內燃機功率標定。
12h功率內燃機允許連續運轉12h的最大有效功率。適用於農用拖拉機,農業排灌,內燃機車,內河船舶等用途的內燃機功率標定。
持續功率內燃機允許長期連續運轉的最大有效功率。適用於農業排灌,遠洋輪船及電站等用途的內燃機功率標定。
按照中國國家標准標定的柴油機功率稱為標定功率。但是標准中並未規定標定功率與極限功率的關系,因此,標定功率只能通過生產實踐合理確定。
如需了解更多信息,歡迎登錄相關網站:http://www.huaquangroup.cn

④ 發動機的有效指標主要有那些

發動機的性能指標用來表徵發動機的性能特點,並作為評價各類發動機性能優劣的依據。一般有動力性指標、經濟性指標、強化指標、緊湊型指標、環境指標、可靠性指標、耐久性指標、工藝性指標、內燃機速度特性等。

動力性指標是表徵發動機做功能力大小的指標,一般用發動機的有效轉矩、有效功率、轉速和平均有效壓力等作為評價發動機動力性好壞的指標。

發動機對外輸出的轉矩稱為有效轉矩,即發動機的扭矩。一般發動機的缸徑越大,活塞行程越長,發動機的扭矩就越大,加速能力和爬坡能力就越強。

發動機經濟性指標包括有效熱效率和有效燃油消耗率等。強化指標則是指發動機承受熱負荷和機械負荷能力的評價指標,一般包括升功率和強化系數等。緊湊型指標是用來表徵發動機總體結構緊湊程度的指標,通常用比容積和比質量衡量。

環境指標用來評價發動機排氣品質和雜訊水平,關繫到人類的健康及其賴以生存的環境。各國政府都制定出嚴格的控製法規,以期消減發動機排氣和雜訊對環境的污染。中國在2020年實行國六標准。

可靠性指標是表徵發動機在規定的使用條件下,正常持續工作能力的指標。評價可靠性的指標有首發故障行駛里程、平均故障間隔里程、主要零件的損壞率等。

耐久性指標是指發動機主要零件磨損到不能繼續正常工作的極限時間。通常用發動機的大修里程,即發動機從出廠到第一次大修之間汽車行駛的里程數來衡量。現在絕大多數的發動機的大修里程都在二十萬公里以上。

工藝性指標是指評價發動機製造工藝性和維修工藝性好壞的指標。發動機結構工藝性好,則便於製造,便於維修,就可以降低生產成本和維修成本。

(4)內燃機指標體系中主要有等幾類指標擴展閱讀:

保養注意事項:

空氣濾清器直接關繫到汽車在行駛過程中發動機的進氣問題,車輛只在城市中行駛,空氣濾清器還不會堵塞,但是汽車如果在灰塵較多的路面上行駛後,就需要特別關注一下空氣濾清器的清潔問題了。

如果空氣濾清器發生堵塞或積塵過多就會致使發動機進氣不暢,而且大量的灰塵進入汽缸,會加快汽缸積炭速度,使發動機點火不暢,動力不足,車輛的油耗就自然會升高。

如果濾清器上積塵過多,可以考慮用壓縮空氣從濾芯內部向外吹,將灰塵吹凈。但壓縮空氣的壓力也不能過高,以防濾紙被損壞。在清潔空氣濾清器時切不可用水或油,以防止油水浸染濾芯。

節氣門處油泥產生的原因是多方面的,有些是燃料燃燒的廢氣在節氣門處形成積炭;再就是沒有被空氣濾清器過濾的雜質在節氣門處殘留形成。油泥多了進氣會產生氣阻,從而導致油耗的增加。

在清洗節氣門時,首先要拆除進氣喉管,露出節氣門,拆掉電瓶負極,關閉點火開關,把節氣門翻板扳直,往節氣門內噴少量化油器清洗劑然後用滌綸抹布或者高紡無紡布小心擦洗節氣門深處,手夠不著的地方可以用夾子夾住抹布小心擦洗,清洗干凈後裝好進氣喉管和電瓶負極就可以點火了!

因為燃燒室容易產生積炭,而積炭會導致啟動困難。噴油嘴積炭也會導致油道堵塞、汽油噴射變形、霧化差,燃油消耗自然也會增大。

對於燃燒室的清洗可以採用專用退炭劑,使燃燒室和噴油嘴上的積炭軟化並與零件表面脫離,然後將軟化的積炭除去。這種除炭方法效果好,比起以前直接擦拭相比有不損傷零件表面等優點,並且除炭的效率也得到了大大的提高。

⑤ 內燃機的性能指標

內燃機是指燃料在氣缸內部進行燃燒,直接將產生的氣體 (即工質)所含的熱量轉變為機械能的機械。設計鑽機時,主要應用內燃機的有效性能指標,包括以下主要性能指標。

圖1-14 變頻調速方案方框圖

(1)有效功率:內燃機的實際輸出功率稱為有效功率Pe(kW),其值為

Pe=Pi-Pm

式中:Pi為指示功率;Pm為總的機械損失功率。

指示功率是指工質在氣缸中發生的功率。內燃機的有效功率可由下式計算

液壓動力頭岩心鑽機設計與使用

式中:Te為內燃機的輸出轉矩,N·m;n為內燃機曲軸的轉速,r/min。

(2)標定功率:在內燃機名牌上規定的功率即為標定功率Peb,與此同時相應的規定了的標定轉速neb。製造廠將保證內燃機在標定功率和轉速下運行時,具有規定技術經濟指標和可靠性。

國家標准規定的標定功率有:15min功率、1h功率、12h功率和持續功率,它們分別表示內燃機保證持續運行15min、1h、12h和長期持續運行的最大功率。

(3)升功率:每升氣缸工作容積所發出的有效功率稱為升功率Pi,單位為kW/L。Pi大則發動機緊湊,強化程度高。升功率的一般范圍是:農用柴油機9~15kW/L,載重車用柴油機11~26kW/L。

(4)有效燃油消耗率:(又稱比油耗),單位有效功率每小時的耗油量稱為有效燃油消耗率ge,單位為g/(kW·h)

液壓動力頭岩心鑽機設計與使用

式中:mf為每小時耗油量,kg/h。

(5)機械效率:有效功率與指示功率之比稱為機械效率ηm。

液壓動力頭岩心鑽機設計與使用

⑥ 何謂內燃機的特性包括哪些特性,性能指標與工作過程參數之間的關系如何

內燃機主要性能參數在一定條件下隨工況或調節參數改變而變化的規律。常以曲線表示,稱為特性曲線。它是了解內燃機性能情況的重要依據,可據此對內燃機選定合理的工作區域和調整數據,以充分發揮其效能。特性曲線通過台架試驗測得。

內燃機的工況按使用條件大致可分為三類:①轉速近似於不變,但功率是變化的。例如內燃機與水泵、植保機械、發電機和壓氣機配套工作時,即屬此類(圖1中直線1)。若功率亦不變,則內燃機在固定工況下工作,如大型泵站(圖1中A點)。②功率與轉速之間有一定依賴關系。例如內燃機作為船用主機,通過齒輪箱或直接與螺旋槳連
接時,內燃機發出的功率總是與螺旋槳吸收的功率相對應,因此功率與轉速的變化規律必然與螺旋槳的特性曲線相似(圖1中曲線2)。③功率和轉速分別在很大的范圍內變化。例如配拖拉機、聯合收割機、汽車用的內燃機,其功率Ne和轉速n由使用情況而定,可以在圖1中最低工作穩定轉速nmin、最大許用轉速nmax以及最大功率曲線3所包圍的范圍內任何一種工況下工作。農用內燃機的使用工況主要是第一類和第三類。

圖1 內燃機各種工況

速度特性 燃料調節機構位置不變時,內燃機主要性能參數隨轉速改變而變化的規律。試驗時,柴油機應將噴油泵調節齒桿的位置保持不變,汽油機應將化油器節氣門的位置保持不變,對於帶有調速器的內燃機,應使調速器不起作用。然後調節負荷,在不同轉速下分別測定內燃機的主要性能指標,據此繪出速度特性曲線。對應於燃料調節機構的每一位置都有一速度特性曲線。當燃料調節機構固定在全負荷位置時,測得的速度特性曲線稱為全負荷速度特性曲線,又稱外特性曲線(圖2);當燃料調節機構固定在部分負荷各位置時,測得的速度特性曲線稱為部分負荷速度特性曲線。外特性表徵了內燃機在不同轉速下所能產生的最大扭矩和最大功率。內燃機產品銘牌上標明的功率、扭矩
及其相應的轉速,都是以外特性為依據的。外特性曲線的典型形狀應是:最大功率時的轉速高於最低燃油消耗率時的轉速,這可使變速變負荷內燃機的運行有較好的燃油消耗;最大扭矩時的轉速應低於最大功率時的轉速,這一特點在實際使用中有很大意義。因為內燃機在最大功率工況工作時,如遇到負荷突然增加,則轉速便會下降,若此時扭矩恰恰有所增加,就有助於克服阻力,使內燃機始終處於穩定工作狀態,從而避免熄火。

⑦ 發動機的主要性能指標

1、有效轉矩,發動機對外輸出的轉矩稱為有效轉矩,即發動機的扭矩。一般發動機的扭矩越大,它的加速能力和爬坡能力越強。一般發動機的缸徑越大,活塞行程越長,發動機的扭矩也越大。這也是大排量發動機扭矩更大的原因之一。

2、有效功率,發動機在單位時間對外輸出的有效功稱為有效功率,即發動機的功率,它等於有效轉矩與曲軸角速度的乘積。發動機功率是發動機性能最重要的指標,汽車的最高車速就是由發動機功率決定的。

3、發動機轉速,發動機曲軸每分鍾的回轉數稱為發動機轉速。發動機轉速的高低,關繫到單位時間內作功次數的多少或發動機有效功率的大小,即發動機的有效功率隨轉速的不同而改變。因此,在說明發動機有效功率的大小時,必須同時指明其相應的轉速。

4、平均有效壓力,單位氣缸工作容積發出的有效功稱為平均有效壓力,平均有效壓力越大,發動機的作功能力越強。現在很多發動機都採用了渦輪增壓,它的平均有效壓力就要高於自然吸氣的發動機。

(7)內燃機指標體系中主要有等幾類指標擴展閱讀:

汽車發動機性能在駕駛中的應用:

汽車發動機常用的性能指標有:有效功率Pe;有效轉矩Te;平均有效壓力pe和有效燃料消耗率ge及每小時耗油量GT。這些性能指標隨發動機運轉工況而變化的關系,稱為發動機特性,包括發動機的速度特性和負荷特性。

化油器節氣門開度保持不變,發動機的性能指標Pe、Te、ge隨發動機轉速n變化的關系,叫做發動機的速度特性。節氣門全開的速度特性叫外特性。根據發動機的速度特性,我們可以得出發動機在較低轉速時,隨著轉速的逐漸升高,轉矩會愈來愈大,到某一轉速時,轉矩達到最大值。

以後,隨著轉速的繼續升高,轉矩反而下降。同樣,發動機的功率也隨轉速和轉矩的增加而增大,到某一轉速時,功率達到最大值,若轉速再增加,功率反而下降。一般汽油發動機的工作范圍應在最大轉矩轉速和最大功率轉速之間。如解放CAI092型汽車,最大轉矩轉速為1200~1400轉/分鍾,最大功率轉速為3000轉/分鍾。

車輛在行駛過程中,當需要克服較大阻力,須增大發動機有效功率時,不能盲目將加速踏板踩到底,應該了解所駕車輛的最大功率轉速,並用加速踏板正確控制發動機轉速。超過最大功率轉速,會使發動機摩擦損失功率增加,機械效率降低,耗油量增大,發動機大修周期縮短。

⑧ 內燃機指標體系有哪些

動力性能指標,經濟性能指標,運轉性能指標,耐久可靠性指標

⑨ 內燃機分類

內燃機以其熱效率高、結構緊湊,機動性強,運行維護簡便的優點著稱於世。一百多年以來,內燃機的巨大生命力經久不衰。目前世界上內燃機的擁有量大大超過了任何其它的熱力發動機,在國民經濟中佔有相當重要的地位。現代內燃機更是成為了當今用量最大、用途最廣、無一與之匹敵的的最重要的熱能機械。

當然內燃機同樣也存在著不少的缺點,主要是:對燃料的要求高,不能直接燃用劣質燃料和固體燃料;由於間歇換氣以及製造的困難,單機功率的提高受到限制,現代內燃機的最大功率一般小於4萬千瓦,而蒸汽機的單機功率可以高達數十萬千瓦;內燃機不能反轉;內燃機的雜訊和廢氣中有害成分對環境的污染尤其突出。可以說這一百多年來的內燃機的發展史就是人類不斷革新,不斷挑戰克服這些缺點的歷史。

內燃機發展至今,約有一個半世紀的歷史了。同其他科學一樣,內燃機的每一個進步都是人類生產實踐經驗的概括和總結。內燃機的發明始於對活塞式蒸汽機的研究和改進。在它的發展史中應當特別提到的是德國人奧托和狄塞爾,正是他們在總結了前人無數實踐經驗的基礎上,對內燃機的工作循環提出了較為完善的奧托循環和狄塞爾循環,才使得到他們為止幾十年間無數人的實踐和創造活動得到了一個科學地總結,並有了質的飛躍,他們將前任粗淺的、純經驗的、零亂無序的的經驗,加以繼承、發展、總結、提高,找出了規律性,為現代汽油機和柴油機熱力循環奠定了熱力學基礎,為內燃機的發展做出了偉大的貢獻。

往復活塞式內燃機

往復活塞式內燃機的種類很多,主要的分類方法有這樣一些:按所用的燃料的不同,分為汽油機,柴油機、煤油機、煤氣機(包括各種氣體燃料內燃機)等;按每個工作循環的行程數不同,分為四沖程和二沖程;按著火方式不同,分為點燃式和壓燃式;按冷卻方式不同,分為水冷式和風冷式;按氣缸排列形式不同,分為直列式、V型、對置式、星型等;按氣缸數不同,分為單缸內燃機和多缸內燃機等;按內燃機的用途不同,分為汽車用、農用、機車用、船用以及固定用等等。本文將會主要針對煤氣機、汽油機、柴油機這樣一個發展脈絡來向大家介紹。

最早的內燃機——煤氣機

最早出現的內燃機是以煤氣為燃料的煤氣機。1860年,法國發明家萊諾製成了第一台實用內燃機(單缸、二沖程、無壓縮和電點火的煤氣機,輸出功率為0.74—1.47KW,轉速為100r/min,熱效率為4%)。法國工程師德羅沙認識到,要想盡可能提高內燃機的熱效率,就必須使單位氣缸容積的冷卻面積盡量減小,膨脹時活塞的速率盡量快,膨脹的范圍(沖程)盡量長。在此基礎上,他在1862年提出了著名的等容燃燒四沖程循環:進氣、壓縮、燃燒和膨脹、排氣。

1876年,德國人奧托製成了第一台四沖程往復活塞式內燃機(單缸、卧式、以煤氣為燃料、功率大約為2.21KW、180r/min)。在這部發動機上,奧托增加了飛輪,使運轉平穩,把進氣道加長,又改進了氣缸蓋,使混合氣充分形成。這是一部非常成功的發動機,其熱效率相當於當時蒸汽機的兩倍。奧托把三個關鍵的技術思想:內燃、壓縮燃氣、四沖程融為一體,使這種內燃機具有效率高、體積小、質量輕和功率大等一系列優點。在1878年巴黎萬國博覽會上,被譽為「瓦特以來動力機方面最大的成就」。等容燃燒四沖程循環由奧托實現,也被稱為奧托循環。

煤氣機雖然比蒸汽機具有很大的優越性,但在社會化大生產情況下,仍不能滿足交通運輸業所要求的高速、輕便等性能。因為它以煤氣為燃料,需要龐大的煤氣發生爐和管道系統。而且煤氣的熱值低(約1.75×107~2.09×107J/m3),故煤氣機轉速慢,比功率小。到19世紀下半葉,隨著石油工業的興起,用石油產品取代煤氣作燃料已成為必然趨勢。

汽油機的出現

1883年,戴姆勒和邁巴赫製成了第一台四沖程往復式汽油機,此發動機上安裝了邁巴赫設計的化油器,還用白熾燈管解決了點火問題。以前內燃機的轉速都不超過200r/min,而戴姆勒的汽油機轉速一躍為800—1000r/min。它的特點是功率大,質量輕、體積小、轉速快和效率高,特別適用於交通工具。與此同時,本茨研製成功了現在仍在使用的點火裝置和水冷式冷卻器。

到十九世紀末,主要的集中活塞式內燃機大體上進入了實用階段,並且很快顯示出巨大的生命力。內燃機在廣泛應用中不斷地得到改善和革新,迄今已達到一個較高的技術水平。在這樣一個漫長的發展歷史中,有兩個重要的發展階段是具有劃時代意義的:一是50年代興起的增壓技術在發動機上的廣泛應用;再就是 70年代開始的電子技術及計算機在發動機研製中的應用,這兩個發展趨勢至今都方興未艾

首先我們來看一下汽油機在本世紀的發展歷程。在汽車和飛機工業的推動下汽油機取得了長足的發展。按提高汽油機的功率、熱效率、比功率和降低油耗等主要性能指標的過程,可以把汽油機的發展分為四個階段。

第一階段是本世紀最初二十年,為適應交通運輸的要求,以提高功率和比功率為主。採取的主要技術措施是提高轉速、增加缸數和改進相應輔助裝置。這個時期內,轉速從上世紀的500—800r/min提高到1000—1500r/min,比功率從3.68W/Kg提高到441.3—735.5W/Kg,對提高飛機的飛行性能和汽車的負載能力具有重大的意義。

第二階段時間在20年代,主要解決汽油機的爆震燃燒問題。當時汽油機的壓縮比達到4時,汽油機就發生爆震。美國通用汽車公司研究室的米格雷和鮑義德通過在汽油中加入少量的四乙基鋁,干擾氧和汽油分子化合的正常過程,解決了爆震的問題,使壓縮比從4提高到了8,大大提高了汽油機的功率和熱效率。當時另一嚴重影響汽油機功率和熱效率的因素是燃燒室的形狀和結構,英國的里卡多及其合作者通過對多種燃燒室及燃燒原理的研究,改進了燃燒室,使汽油機的功率提高了20%。

第三階段是從20年代後期到40年代早期,主要是在汽油機上裝備增壓器。廢氣渦輪增壓可使氣壓增至1.4—1.6大氣壓,他的應用為提高汽油機的功率和熱效率開辟了一個新的途徑。但是其真正的廣泛應用,卻是在50年代後期才普及的。

第四階段從50年代至今,汽油機技術在原理重大變革之前發展已近極致。它的結構越來越緊湊,轉速越來越高。其技術現狀為:缸內噴射;多氣門技術;進氣滾流,稀薄分層燃燒;電子控制點火正時、汽油噴射及空燃比隨工況精確控制等全面電子發動機管理;廢氣在循環及三元催化等排氣凈化技術等。其集中體現在近年來研製成功並投產的缸內直噴分層充氣稀燃汽油機(GDI)。

但是隨著70年代開始的電子技術在發動機上的應用,為內燃機技術的改進提供了條件,使內燃機基本上滿足了目前世界各國有關排放、節能、可靠性和舒適性等方面的要求。內燃機電子控制現已包括電控燃油噴射、電控點火、怠速控制、排放控制、進氣控制、增壓控制、警告提示、自我診斷、失效保護等諸多方面。

同樣內燃機電子控制技術的發展也大致可分為四個階段:

1、內燃機零部件或局部系統的單獨控制,如電子油泵、電子點火裝置等。

2、內燃機單一系統或幾個相關系統的獨立控制,如燃油供給系統控制、最佳空燃比控制等。

3、整台內燃機的統一智能化控制,如內燃機電子控制系統。

4、裝置與內燃機動力的集中電子控制,如汽車、船舶、發電機組的集中電子控制系統。

電子控制系統一般由感測器、執行器和控制器三部分組成。由此構成各種不同功能、不同用途的控制系統。。其主要目標是保持發動機各運行參數的最佳值,以求得發動機功率、燃油耗和排放性能的最佳平衡,並監視運行工況。如Caterpillar公司的3406PEPC系統是在3406柴油機上採用可變程序的發動機控制系統,具有電子調速功能,採用電子控制空燃比,可將噴有提前角始終保持在最佳值。美國Stanaclyne公司將其生產的DB型分配泵改為電子控制噴油泵,稱為PFP系統,採用步進電機作為執行元件來控制噴油量和噴油定時

柴油機——內燃機家族的另一個明星

柴油機幾乎是與汽油機同時發展起來的,它們具有許多相同點。所以柴油機的發展也與汽油機有許多相似之處,可以說在整個內燃機的發展史上,它們是相互推動的。

德國狄塞爾博士於1892年獲得壓縮點火壓縮機的技術專利,1897年製成了第一台壓縮點火的「狄塞爾」內燃機,即柴油機。

柴油機的高壓縮比帶來眾多的優點:

1、不但可以省去化油器和點火裝置,提高了熱效率,而且可以使用比汽油便宜得多的柴油作燃料。

2、柴油機由於其壓縮比大,最大功率點、單位功率的油耗低。在現代優秀的發動機中,柴油機的油耗約為汽油機的70%。特別像汽車,通常在部分負荷工況下行駛,其油耗約為汽油機的60%。柴油機是目前熱效率最高的內燃機。

3、柴油機因為壓縮比高,發動機結實,故經久耐用、壽命長。

同時高壓縮比也帶來了缺點:

1、柴油機的結構笨重。通常柴油的單位功率質量約為汽油機的1.5~3倍。柴油機壓縮比高,爆發壓力也高,可達汽油機的1.5倍左右(不增壓的情況下)。為承受高溫高壓,就要求結實的結構。所以柴油機最初只是作為一種固定式發動機使用。

2、在同一排量下,柴油機的輸出功率約為汽油機的1/3。因為柴油機把燃料直接噴入氣缸,不能充分利用空氣,相應功率輸出低。假設汽油機的空氣利用率為100%,那麼柴油機僅有80%~90%。柴油機功率輸出小的另一原因是壓縮比大,發動機的摩擦損失比汽油機大。這種摩擦損失與轉速成正比,不能期望通過增加轉速來提高功率。轉速最高的汽油機每分鍾可運轉10000次以上(如賽車發動機),而柴油機的最高轉速卻只有5000r/min。

近百年來,柴油機的熱效率提高近80%,比功率提高幾十倍,空氣利用率達90%。當今柴油機的技術水平表現為:優良的燃燒系統;採用4氣門技術;超高壓噴射;增壓和增壓中冷;可控廢氣再循環和氧化催化器;降低雜訊的雙彈簧噴油器;全電子發動機管理等,集中體現在以採用電控共軌式燃油噴射系統為特徵的新一代柴油機上。目前,日本的Nippondeno公司(ECDU2),德國Bosch(ZECCEL)和美國Caterpilla公司(HELII) 是研究和生產共軌式電控噴油系統的主要公司。

增壓技術在柴油機上的應用要比汽油機晚一些。早在20年代就有人提出壓縮空氣提高進氣密度的設想,直到1926年瑞士人A.J.伯玉希才第一次設計了一台帶廢氣渦輪增壓器的增壓發動機。由於當時的技術水平和工藝、材料的限制,還難以製造出性能良好的渦輪增壓器,加上二次大戰的影響,增壓技術為能迅速普及,直到大戰結束後,增壓技術的研究和應用才受到重視。1950年增壓技術才開始在柴油機上使用並作為產品提供市場。

50年代,增壓度約為50%,四沖程機的平均有效壓力約為0.7—0.8MPa,無中冷,處於一個技術水平較低的發展階段。其後20多年間,增壓技術得到了迅速的發展和廣泛地採用。

70年代,增壓度達200%以上,正式作為商品提供的柴油機的平均有效壓力,四沖程機已達2.0MPa以上,二沖程機已超過1.3MPa,普遍採用中冷,使高增亞(>2.0MPa)四沖程機實用化。單級增壓比接近5,並發展了兩級增壓和超高增壓系統,相對於50年代初期剛採用增壓技術的發動機技術水平,30年來有了驚人的發展。

進入80年代,仍保持這種發展勢頭。進排氣系統的優化設計,提高充氣效率,充分利用廢氣能量,出現諧振進氣系統和MPC增壓系統。可變截面渦輪增壓器,使得單級渦輪增壓比可達到5甚至更高。採用超高增壓系統,壓力比可達10以上,而發動機的壓縮比可降至6以下,發動機的功率輸出可提高2—3倍。進一步發展到與動力渦輪復合式二級渦輪增壓系統。由此可見,高增壓、超高增壓的效果是可觀的,將發動機的性能提高到了一個嶄新的水平。

轉動式內燃機

在蒸汽機的發展歷史中有從往復活塞式蒸汽機到蒸汽輪機的演化。這一點,對內燃機的發展大有啟發的。往復式內燃機運動要通過曲軸連桿機構或凸輪機構、擺盤機構、搖臂機構等,轉換為功率輸出軸的轉動,這樣不僅使機構復雜,而且由於轉動機構的摩擦損耗,還會降低機械效率。另外由於活塞組的往復運動造成曲柄連桿機構的往復慣性力,這個慣性力與轉速的平方成正比。隨轉速的提高,軸承上的慣性負荷顯著增加,並由於慣性力的不平衡而產生強烈的振動。此外,往復式內燃機還有一套復雜的氣門控制機構。於是人們設想:既然工具機的運動形式大部分都是軸的轉動,能否效法從往復活塞式蒸汽機到蒸汽輪機的路子,使熱能直接轉化為軸的轉動呢?於是人們開始了在這一領域的探索。

燃氣輪機

1873年布拉頓(GeorgeBrayton)製造了一種定壓燃燒的發動機。該機能提供使燃氣完全膨脹到大氣壓所發出的功率。20世紀初法國的阿曼卡(BeneArmangaud)等成功地應用布拉頓循環原理製成燃氣輪機。但是,因當時條件限制,熱效率很低未能得到發展。

到30年代,由於空氣動力學及耐高溫合金材料和冷卻系統的進展,為燃氣輪機進入實用創造了條件。燃氣輪機雖然是內燃機,但它沒有像往復式內燃機那樣必須在封閉的空間里和限定的時間內燃燒的限制,所以不會發生像汽油機那樣令人擔心的爆震,也很少像柴油機那樣受摩擦損失的限制;且燃料燃燒所產生的氣體直接推動葉輪轉動,故它的結構簡單(與活塞式內燃機相比,其部件僅為它的1/6左右)、質量輕、體積小、運行費用省,且易於採用多種燃料,也較少發生故障。雖然燃氣輪機目前尚存在一些缺點:壽命短、需要高級耐熱鋼材和成本高及排污(主要是NOx)較嚴重等,致使至今燃氣輪機的應用仍局限於飛機、船舶、發電廠和機車,但是由於布拉頓循環的優越性和燃氣輪機對燃油的限制少及上述的其它優點,使得它仍為現在和將來人們致力研究的動力技術之一。若突破渦輪入口溫度,大大提高熱效率,且克服其它缺點,燃氣輪機有望取代汽、柴油機。

旋轉活塞式發動機

一直以來人們都在致力於建造旋轉式發動機,其目標是避免往復式發動機固有的復雜性。在1910年以前,人們曾提出過2000多個旋轉發動機的方案。20世紀初,又有許多人提出不同的方案,但大多因結構復雜或無法解決氣缸密封問題而不能實現。直到1954年,德國人汪克爾 (FelixWankel)經長期研究,突破了氣缸密封這一關鍵技術,才使具有長短幅圓外旋輪線缸體的三角旋轉活塞發動機首次運轉成功。轉子每轉一圈可以實現進氣、壓縮、燃燒膨脹和排氣過程,按奧托循環運轉。1962年三角轉子發動機作為船用動力,到80年代日本東洋工業公司把它用於汽車引擎。

轉子發動機有一系列的優點:

1、它取消了曲柄連桿機構、氣門機構等,得以實現高速化。

2、質量輕(比往復式內燃機質量下降1/2到1/3)、結構和操作簡單(零件數量比往復式少40%,體積減少50%)。

3、在排氣污染方面也有所改善,如NOx產生較少。

但轉子發動機也存在著嚴重的不足之處:

1、.這種結構的密封性能較差,至今只能作為壓縮比低的汽油機使用。

2、由於高速帶來了扭矩低,組織經濟的燃燒過程困難。

3、壽命短、可靠性低以及加工長短軸旋輪線的專用機床構造復雜等。

內燃機的發展趨勢

內燃機的發明,至今已有100多年的歷史。如果把蒸汽機的發明認為是第一次動力革命,那麼內燃機的問世當之無愧是第二次動力革命。因為它不僅是動力史上的一次大飛躍,而且其應用范圍之廣、數量之多也是當今任何一種別的動力機械無與倫比的。隨著科技的發展,內燃機在經濟性、動力性、可靠性等諸多方面取得了驚人的進步,為人類做出了巨大貢獻。蒸汽機從初創到完成花去了一個世紀的時間,從完成到極盛又走了一個世紀,從極盛到衰落大約也是一個世紀。內燃機的發明也經歷了一個世紀的歷程,從那時起,人類又前進了一個世紀,可以說如今內燃機已進入了極盛時期。在世紀之交的今天,我們關注內燃機的未來,人們在拭目以待的同時,更希望內燃機能在新的世紀再創輝煌的業績。這里我將向大家展示新世紀里內燃機的發展趨勢。

內燃機增壓技術

從內燃機重要參數(壓力、溫度、轉速)的發展規律來看,可以發現這三個參數在1900年以前隨著年代的推移提高得很快。而在1900年以後,尤其是1950年以後,溫度、轉速提高變慢,而平均有效壓力隨著年代的增加仍直線上升。實踐證明:提高平均有效壓力可以大幅度地提高效率,減輕質量。而提高平均有效壓力的技術就是提高增壓度。如柴油機增壓可大幅度地縮小柴油機進氣管尺寸,並使氣缸有足夠大的充氣效率用於提高柴油機的功率,使之能在一個寬廣的轉速范圍內既提高功率又有大的扭矩。一台增壓中冷柴油機可以使功率成倍提高,而造價僅提高15%~30%,即每馬力造價可平均降低40%。所以增壓、高增壓、超高增壓是當前內燃機重要的發展方向之一。但是這只是問題的一個方面,另一個方面發動機強化和超強化會給零部件帶來過大的機械負荷和熱負荷,特別是熱負荷問題已成為發動機進一步強化的限制;再就是單級高效率、高壓比壓氣機也限制了增壓技術的進一步發展,因此,不是增壓度越高越好的。

內燃機電子控制技術

內燃機電子控制技術產生於20世紀60年代後期,通過70年代的發展,80年代趨於成熟。隨著電子技術的進一步發展,內燃機電子控制技術將會承擔更加重要的任務,其控制面會更寬,控制精度會更高,智能化水平也會更高。諸如燃燒室容積和形狀變化的控制、壓縮比變化控制、工作狀態的機械磨損檢測控制等較大難度的內燃機控制將成為現實並得到廣泛應用。內燃機電子控制是由單獨控制向綜合、集中控制方向發展,是由控制的低效率及低精度向控制的高效率及高精度發展的。隨著人類進入電子時代,21世紀的內燃機也將步入「內燃機電子時代」,其發展情況將與高速發展的電子技術相適應。內燃機電子控制技術是內燃機適應社會發展需求的主要技術依託,也是內燃機保持21世紀輝煌的重要影響因素。

內燃機材料技術

內燃機使用的傳統材料是鋼、鑄鐵和有色金屬及其合金。在內燃機發展過程中,人們不斷對其經濟性、動力性、排放等提出了更高的要求,從而對內燃機材料的要求相應提高。根據內燃機今後的發展目標,對內燃機材料的要求主要集中在絕熱性、耐熱性、耐磨性、減摩性、耐腐蝕性及熱膨脹小、質量輕等方面。要促進內燃機材料的發展,除採用改變材料化學成分與含量來達到零部件所要求的物理、機械性能這一常規方法外,也可採用表面強化工藝來使材料達到所需的要求,但內燃機材料的發展更需要我們去開發適應不同工作狀態的新材料。與內燃機傳統材料相比,陶瓷材料具有無可比擬的絕熱性和耐熱性,陶瓷材料和工程塑料(如纖維增強塑料)具有比傳統材料優越的減摩性、耐磨性和耐腐蝕性,其比重與鋁合金不相上下而比鋼和鑄鐵輕得多。因此,陶瓷材料(高性能陶瓷)憑借其優良的綜合性能,可用在許多內燃機零件上,如噴油點火零件、燃燒室、活塞頂等,若能克服脆性、成本等方面的弱點,在新世紀里將會得到廣泛應用。工程塑料也可用於許多內燃機零件,如內燃機上的各種罩蓋、活塞裙部、正時齒輪、推桿等,隨著工藝水平的提高及價格的降低,未來工程塑料在內燃機上的應用將會與日俱增。綜合內燃機的各種材料,為揚長避短,在新材料的基礎上又開發出了以金屬、塑料或陶瓷為基材的各種復合材料,並開始在內燃機上逐漸推廣使用。

展望新世紀,在今後一段時期內,鋼、鑄鐵和有色金屬及其合金,仍將是內燃機的主要材料。各種表面強化工藝將更加先進,並得到廣泛應用。以金屬、塑料、陶瓷為基材的各種復合材料將在10年之後進入驚人的高速推廣時期,新材料在內燃機上的使用也將同時加速。

內燃機製造技術

內燃機的發展水平取決於其零部件的發展水平,而內燃機零部件的發展水平,是由生產製造技術等因素來決定的。也就是說,內燃機零部件的製造技術水平,對主機的性能、壽命及可靠性有決定性的影響。同樣製造技術與設備的關系也是密不可分的,每當新一代設備或工藝材料研製成功,都會給製造技術的革新帶來突破性的進展。進入新世紀後,科學技術的發展會異常迅猛,新設備的研製周期將越來越短,因此新世紀內燃機製造技術必將形成迅速發展的局面。

由於鑄造技術水平的提高,氣沖造型、靜壓造型、樹脂自硬砂造型制芯、消失模鑄造,使內燃機鑄造的主要零件如機體、缸蓋可以製成形狀復雜曲面及箱型結構的薄壁鑄件。這不僅在很大程度上提高了機體剛度,降低了雜訊輻射,而且使內燃機達到輕量化。由於象噴塗、重熔、燒結、堆焊、電化學加工、激光加工等局部表面強化技術的進步,使材料功能得到完善的發揮;由於設備水平提高,加工製造技術向高精度、高效率、自動化方向發展,帶動了內燃機零部件生產向高集中化程度發展。另一方面,柔性製造技術的推廣,使內燃機產品更新換代具有更大的靈活性和適應性。多品種小批量生產的柔性製造系統引起了內燃機製造商們的廣泛認同,也順應了生產技術發展及市場形勢的變化。電子技術及計算機在設計、製造、試驗、檢測、工藝過程式控制制上的應用,推動了行業的技術進步,提高了內燃機的產品質量。新材料的發展也推動了內燃機零部件生產工藝的變革,特別是工程塑料、陶瓷材料及復合材料在內燃機上的運用,有力地促進了內燃機製造技術的發展。隨著內燃機電控技術的發展,電控系統三大組成部分(感測器、執行器、控制單元)將成為內燃機零部件行業的重要分支,同時向傳統的內燃機製造業提出了新的課題。

由此我們可以推斷:在21世紀,內燃機製造技術將向高精度、多元化方面飛速發展。它的發展速度和方向不僅關繫到內燃機的質量,還直接對內燃機的未來產生重大影響。就其產品技術進步快慢而言,汽車內燃機發展最快,其次是機車、船舶、發電機組、工程機械、農業機械等。

內燃機代用燃料

由於世界石油危機和發動機尾氣對環境的污染日益嚴重,內燃機技術的研究轉向高效節能及開發利用潔凈的代用燃料。以汽油機和柴油機為基礎進行改造或重新設計,開發以天然氣、液化石油氣和氫氣等為燃料的氣體發動機為目前和今後一段時間內內燃機技術的重點之一。其中氣體發動機的功率恢復技術和氫氣發動機的燃燒控制等是其中的重中之重。

綜述

內燃機在應用中不斷發展,各種內燃機彼此相互競爭,相互滲透,相互綜合,從中演化出各種新的混合式發動機。如燃氣輪機的發明和發展一方面對柴油機形成競爭,另一方面也補充了柴油機,使柴油機廢氣渦輪增壓得到完善,反過來增強了柴油機的競爭能力。燃氣輪機本來也是蒸汽輪機的競爭對手,但人們把燃氣輪機和蒸汽輪機這兩種按不同熱力循環工作的熱機聯合在一起,構成一種嶄新的高效循環:燃氣——蒸汽輪機聯合循環。熱力學第二定律告訴我們,要提高熱效率,應盡可能提高熱機的加熱溫度和降低排熱溫度。蒸汽機的排熱溫度較低(約300K),但由於水蒸氣本身特性和設備條件的限制,其加熱溫度不可能太高,目前穩定在800~900K以下。隨著冶金和冷卻技術的發展,燃氣輪機的加熱溫度一直在上升,目前已達1300~1500K左右;但其排熱溫度卻不能太低,一般為 700~800K,甚至更高。所以這兩種熱機目前的實際熱效率都未超過40%。燃氣——蒸汽聯合循環,將燃氣輪機的排氣送進余熱鍋爐生產蒸氣,供蒸汽輪機利用。聯合循環可以同時取得燃氣輪機加熱溫度高和蒸汽輪機排熱溫度低的雙重優點。目前此聯合循環機組最高熱效率已達47%以上。如果把它作為熱電並供機組使用,其燃料利用率可達80%左右。

混合動力的意義越來越廣,如電動馬達加汽油機或柴油機,以應用各自的優點,屏蔽各自的缺點。而日產汽車工業公司則把高性能的發電機兼電動機裝入柴油機飛輪的位置,成功地研製出名符其實的混合式發動機,即成功地開發了使兩種原理同時作用的原動機(HIMR發動機)。混合式發動機是未來動力技術的熱點之一,它極有望成為既不損害人類已獲得的方便,又能保持美好環境的機械。

內燃機的發展史表明,具有本質上優越性的新技術,是富有生命力的新生事物,必有廣闊的發展前途。第一台實用內燃機熱效率只有4%,而當時蒸汽機的熱效率已達8%~10%;但內燃機「內燃」本質上的優越性決定了它很快地就超過了蒸汽機。

綜上所述,21世紀的內燃機將面臨來自各方面的挑戰,它將義無返顧地朝著節約能源、燃料多樣化、提高功率、延長壽命、提高可靠性、降低排放和雜訊、減輕質量、縮小體積、降低成本、簡化維護保養等方向迅猛發展。在21世紀,天然氣、醇類、植物油及氫等代用燃料將為內燃機增添新的活力,而內燃機電子控制技術在提高品質的同時也延長了內燃機行業的「生命」。新材料、新工藝的技術革命,為21世紀內燃機的發展產生了新的推動力。21世紀的內燃機,將在造福人類的同時不斷彌補自身缺陷,以盡可能完美的形象為人類作出新的貢獻

⑩ 內燃機都有哪些分類

內燃機是熱機的一種,能將燃料的化學能轉化機械能。一般的實現方式為,燃料與空氣混合燃燒,產生熱能,氣體受熱膨脹,通過機械裝置轉化為機械能對外做功。內燃機有非常廣泛的應用,車輛、船舶、飛機、火箭等的發動機基本都是內燃機,其最常見的例子即為車用汽油機與柴油機。內燃機的燃燒氣體同時也是工作介質,比如汽油機中,汽油燃燒後的氣體直接推動活塞做功。與此相對,燃料不作為工作介質的熱機則稱為外燃機,比如蒸汽機的工作介質(蒸氣)並不是燃料。
內燃機的分類:
1、往復活塞式內燃機
汽車上最常見的汽油機與柴油機都屬於往復活塞式內燃機。氣缸的內空氣與燃料的混合氣燃燒後,高壓氣體推動曲柄連桿機構產生扭矩,通過曲軸對外做功,即燃料的化學能最終轉化為曲軸旋轉的動能。汽油機一般是點燃式發動機,燃料與空氣的混合氣體在壓縮行程的末端被火花塞點燃,隨即發生爆炸並推動活塞作往復運動;而柴油機也叫壓燃式發動機,燃料一般被噴入氣缸並發生自燃,自燃後的混合氣體也因膨脹而推動了活塞。除了點燃和壓燃這兩種主要方式外,還有復合式燃燒過程,兼具點燃與壓燃式內燃機的特點。
往復活塞式內燃機的工作周期被分為進氣、壓縮、做功、排氣共四個過程。通過進氣與排氣,將燃料與工作介質進行更換,而做功行程則是將熱能轉化為機械能。通過四個沖程(即活塞從氣缸的一端移動向另一端)完成循環的被稱作四沖程循環,汽車發動機多採用這種形式。只需兩個沖程即完成一次循環的被稱作二沖程循環,在較小功率的發動機如摩托車發動機上較為常見,另外還有NEVIS(NEVIS)等方式。
2、轉子發動機
轉子發動機是一種特殊的活塞式發動機,與往復式發動機的最大區別在於,使用轉子活塞驅動的偏心機構代替了曲柄連桿機構。從側面看,轉子是一個具有凸出弧邊的三角形,氣缸的內壁是余擺線(Trochoid),當轉子旋轉時,轉子的三個頂點沿汽缸壁形成了三個相互分隔的燃燒室,偏心機構使得每個燃燒室的容積不斷改變,與往復活塞式內燃機中活塞上下運動產生的效果類似。轉子每工作一圈,每個燃燒室都能各自完成一次燃燒的循環過程。這種發動機在汽車、摩托車、飛機上有少量使用。
3、燃氣渦輪發動機
燃氣渦輪發動機是一種連續燃燒的內燃機,其循環的各個狀態的改變發生在空間互相分隔的部件中(壓縮機、燃燒室、渦輪機),彼此通過導流部件相連,燃料的供給、燃燒、更換等過程都是持續的。空氣首先由壓縮機加壓,接著進入燃燒室,燃料同時也被噴入燃燒室,兩者混合燃燒,形成的高溫高壓氣體會推動渦輪,一部分能量用以繼續驅動壓縮機,另一部分則用以對外做功。燃料的化學能最終以渦輪旋轉(旋轉動能)的形式被加以利用,剩餘的氣體則被當作廢氣排出。這種發動機在船舶上有廣泛使用。
4、噴氣發動機
大多數的噴氣發動機都是內燃機,其燃燒過程也是連續的。一般在噴氣發動機中,燃燒產生的高壓氣流向外噴射,依據牛頓第三定律產生的反作用力形成推力,如此在理論上即使位於真空的環境中也能夠產生推力,不過也有一些例外,比如渦輪風扇發動機中的一部分氣流並未經過燃燒,使這種發動機兼具渦輪噴氣發動機與渦輪螺旋槳發動機的特點。大部分內燃機是使高溫氣體推動機械裝置旋轉的形式對外作功,即能量最後以旋轉動能的方式呈現,而在許多噴氣發動機中,可對外作功的能量以高溫氣體的動能為最終表現形式。噴氣發動機的種類繁多,在飛機上有廣泛使用。
內燃機能量轉化原理:
作為熱機的一種,內燃機的能量來源是燃料燃燒產生的熱,即物質蘊含的化學能先要轉化為熱能,再成為機械能。液體通過相態的變化(汽化)就能增加壓力,而氣體受熱膨脹也能增大壓力,因此液體和氣體都理論上都可以作為工作介質使用。內燃機的工作介質多為燃料與空氣混合燃燒產生的氣體,在受熱膨脹後,壓力增大,高溫高速的氣體再通過一定的機械裝置對外做工。對於內燃機而言,工作介質必須更換(開式循環),即排放燃燒過的氣體,進入新鮮氣體。

閱讀全文

與內燃機指標體系中主要有等幾類指標相關的資料

熱點內容
紅棗期貨10000元 瀏覽:494
51vv股票是什麼意思 瀏覽:641
信託與pe 瀏覽:64
新聞聯播人民幣 瀏覽:529
股份融資 瀏覽:55
翹然天津資本投資咨詢有限公司 瀏覽:456
融資融券寶典 瀏覽:29
定期理財規劃 瀏覽:599
恆大集團股票行情 瀏覽:6
信託信披 瀏覽:944
大眾公用股票分紅 瀏覽:637
寧波銀行後期查貸款用途 瀏覽:545
好好開車融資 瀏覽:300
融資租賃可行性報告 瀏覽:2
860日幣是多少人民幣 瀏覽:373
房奴如何理財 瀏覽:803
南昌住房公積金貸款計算器 瀏覽:427
國盛華興投資有限公司 瀏覽:822
工行貴金屬掛單四種 瀏覽:918
主力資金進出散戶資金進出指標公式 瀏覽:880