A. 金融機構銀行大數據的應用有哪些
銀行多源異構的數據類型是首先需要被考慮的。只有將多源異構的數據處理好,為應用建設打好基礎,銀行建設的大數據項目才有意義。銀行的數據類型可分為結構化數據、半結構化數據與非結構化數據三大類型。
B. 金融機構有哪些信息化,大數據需求
數據大集中
數據大集中是一個過程,之前整個銀行體系都在分行,包括證券公司也是如此。這些金融機構並沒有集中的數據中心概念,所以他們先做了數據大集中。
數據倉庫
數據倉庫是在數據大集中的基礎上,提升、改善了數據的質量。
報表
在上面兩步的基礎上,做了兩個報表:一個是監管報表,另一個是內部管理報表。
決策支持
決策支持是基於報表而形成的系統。但是,最後形成的決策支持系統扮演的角色並不是全局性的。比如,針對風險部門的是風險數據倉庫,針對業務部的是客戶數據倉庫,所以在金融信息化過程中,以上四個方面還是部分處於分離的狀態。
數據整合
無論做什麼樣的分析,數據質量是最重要的。如果數據質量差,很多事情都做不了。
公開數據現在越來越開放,比如說工商數據、徵信數據。所以我覺得很多公開數據的運用,確實為數據分析提供了非常好的基礎。
智能金融的嘗試
為什麼用嘗試二字,因為我還是持一個比較保守的觀點。就智能金融而言,現在的數據挖掘技術與人工智慧技術還是不夠的,但是我相信科技的不斷發展肯定會解決這個問題。我一直堅信一個觀點就是:以後絕對不會存在物理上雲的概念。再過十年或者二十年所有的東西都是雲,這就是趨勢,是你沒有辦法改變的。我覺得智能金融或者大數據是一個趨勢,是一個沒有辦法去改變、沒有餘地可討論的趨勢。
C. 大數據徵信提升金融機構風控能力有哪些招
大數據徵信說復白了制還是搞清以下兩點:還款意願、還款能力
通過工商、司法、運營商等多種維度(一般大數據徵信公司能做到20多種維度)收集借款人/機構的數據,再導入到模型中。以判斷還款意願及還款能力。
比如從銀行流水判斷收入,就可判斷他的還款能力。
再比如從公安部或法院調取涉案被執行數據,就可判斷他的還款意願。
現在如中誠信徵信、鵬元徵信等起步比較早的徵信公司已經開始做數據關聯和深度學習了,新技術層出不窮,一些看似和信用沒什麼關聯的數據都可以挖掘其中的風控價值。
D. 大數據怎樣影響著金融業
正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,花旗、富國、UBS等先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行360度評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
E. 請舉例金融機構銀行大數據的應用有哪些
1、精準營銷: 互聯網時代的銀行在互聯網金融的沖擊下,迫切的需要掌握更多用戶信息內,繼而構建容用戶360度立體畫像,即可對細分的客戶進行精準營銷、實時營銷等個性化智慧營銷。
2、風險控制: 應用大數據技術,可以統一管理銀行內部多源異構數據與外部徵信數據,可以更好的完善風控體系。內部可保障數據的完整性與安全性,外部可控制用戶風險。
3、改善經營:通過大數據分析方法改善經營決策,為管理層提供可靠的數據支撐,使經營決策更加高效、敏捷,精確性更高。
4、服務創新:通過對大數據的應用,改善與客戶之間的交互、增加用戶粘性,為個人與政府提供增值服務,不斷增強銀行業務核心競爭力。
F. 怎麼通過大數據提升金融機構營銷效率
行業內的金融數據解決方案供應商MobTech,通過自有龐大數據結合金融機構一方數據得出用版戶屬性和App行為傾權向,並通過機器學習演算法和機器學習模型做出評估,在營銷前判別客戶意向,改善營銷規劃。例如,高價值用戶(80-100分)電話&簡訊交替觸達;高價值沉默(60~79分)精準廣告推薦高質量產品;低價值活躍用戶(30~59分)優惠促銷活動大力找回;低價值沉默用戶(30分以下)暫時不做營銷投入。
G. 大數據怎樣影響著金融業
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向。
正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。
中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢:一方面,金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展帶來重要機遇。
首先,大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。
一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。
二是大數據的基礎設施和安全管理亟待加強。在大數據時代,除傳統的賬務報表外,金融機構還增加了影像、圖片、音頻等非結構化數據,傳統分析方法已不適應大數據的管理需要,軟體和硬體基礎設施建設都亟待加強。同時,金融大數據的安全問題日益突出,一旦處理不當可能遭受毀滅性損失。近年來,國內金融企業一直在數據安全方面增加投入,但業務鏈拉長、雲計算模式普及、自身系統復雜度提高等,都進一步增加了大數據的風險隱患。
三是大數據的技術選擇存在決策風險。當前,大數據還處於運行模式的探索和成長期,分析型資料庫相對於傳統的事務型資料庫尚不成熟,對於大數據的分析處理仍缺乏高延展性支持,而且它主要仍是面向結構化數據,缺乏對非結構化數據的處理能力。在此情況下,金融企業相關的技術決策就存在選擇錯誤、過於超前或滯後的風險。大數據是一個總體趨勢,但過早進行大量投入,選擇了不適合自身實際的軟硬體,或者過於保守而無所作為都有可能給金融機構的發展帶來不利影響。
應該怎樣將大數據應用於金融企業呢?
盡管大數據在金融企業的應用剛剛起步,目前影響還比較小,但從發展趨勢看,應充分認識大數據帶來的深遠影響。在制訂發展戰略時,董事會和管理層不僅要考慮規模、資本、網點、人員、客戶等傳統要素,還要更加重視對大數據的佔有和使用能力,以及互聯網、移動通訊、電子渠道等方面的研發能力;要在發展戰略中引入和踐行大數據的理念和方法,推動決策從「經驗依賴」型向「數據依靠」型轉化;要保證對大數據的資源投入,把渠道整合、信息網路化、數據挖掘等作為向客戶提供金融服務和創新產品的重要基礎。
(一)推進金融服務與社交網路的融合
我國金融企業要發展大數據平台,就必須打破傳統的數據源邊界,注重互聯網站、社交媒體等新型數據來源,通過各種渠道獲取盡可能多的客戶和市場資訊。首先要整合新的客戶接觸渠道,充分發揮社交網路的作用,增強對客戶的了解和互動,樹立良好的品牌形象。其次是注重新媒體客服的發展,利用各種聊天工具等網路工具將其打造成為與電話客服並行的服務渠道。三是將企業內部數據和外部社交數據互聯,獲得更加完整的客戶視圖,進行更高效的客戶關系管理。四是利用社交網路數據和移動數據等進行產品創新和精準營銷。五是注重新媒體渠道的輿情監測,在風險事件爆發之前就進行及時有效的處置,將聲譽風險降至最低。
(二)處理好與數據服務商的競爭、合作關系
當前各大電商平台上,每天都有大量交易發生,但這些交易的支付結算大多被第三方支付機構壟斷,傳統金融企業處於支付鏈末端,從中獲取的價值較小。為此,金融機構可考慮自行搭建數據平台,將核心話語權掌握在自己的手中。另一方面,也可以與電信、電商、社交網路等大數據平台開展戰略合作,進行數據和信息的交換共享,全面整合客戶有效信息,將金融服務與移動網路、電子商務、社交網路等融合起來。從專業分工角度講,金融機構與數據服務商開展戰略合作是比較現實的選擇;如果自辦電商,沒有專業優勢,不僅費時費力,還可能喪失市場機遇。
(三)增強大數據的核心處理能力
首先是強化大數據的整合能力。這不僅包括金融企業內部的數據整合,更重要的是與大數據鏈條上其他外部數據的整合。目前,來自各行業、各渠道的數據標准存在差異,要盡快統一標准與格式,以便進行規范化的數據融合,形成完整的客戶視圖。同時,針對大數據所帶來的海量數據要求,還要對傳統的數據倉庫技術,特別是數據傳輸方式ETL(提取、轉換和載入)進行流程再造。其次是增強數據挖掘與分析能力,要利用大數據專業工具,建立業務邏輯模型,將大量非結構化數據轉化成決策支持信息。三是加強對大數據分析結論的解讀和應用能力,關鍵是要打造一支復合型的大數據專業團隊,他們不僅要掌握數理建模和數據挖掘的技術,還要具備良好的業務理解力,並能與內部業務條線進行充分地溝通合作。
(四)加大金融創新力度,設立大數據實驗室
可以在金融企業內部專門設立大數據創新實驗室,統籌業務、管理、科技、統計等方面的人才與資源,建立特殊的管理體制和激勵機制。實驗室統一負責大數據方案的制定、實驗、評價、推廣和升級。每次推行大數據方案之前,實驗室都應事先進行單元試驗、穿行測試、壓力測試和返回檢驗;待測試通過後,對項目的風險收益作出有數據支撐的綜合評估。實驗室的另一個任務是對「大數據」進行「大分析」,不斷優化模型演算法。在「方法論上。
(五)加強風險管控,確保大數據安全。
大數據能夠在很大程度上緩解信息不對稱問題,為金融企業風險管理提供更有效的手段,但如果管理不善,「大數據」本身也可能演化成「大風險」。大數據應用改變了數據安全風險的特徵,它不僅需要新的管理方法,還必須納入到全面風險管理體系,進行統一監控和治理。為了確保大數據的安全,金融機構必須抓住三個關鍵環節:一是協調大數據鏈條中的所有機構,共同推動數據安全標准,加強產業自我監督和技術分享;二是加強與監管機構合作交流,藉助監管服務的力量,提升自身的大數據安全水準;三是主動與客戶在數據安全和數據使用方面加強溝通,提升客戶的數據安全意識,形成大數據風險管理的合力效應。
H. 大數據如何助力銀行業金融機構輿情防控
金融企業運用大數據和機器學習演算法,對欠款客戶進行人群聚類並根據聚類的結果識別騙貸、惡意欠款、惡意透支、盜刷盜用、對交易有疑問拒絕還款、經濟狀況惡化無力還貸、遺忘還貸等多種欠款類型;從而准確預測客戶的還款概率和金額,從而進行催收策略評估,最大限度降低催收成本。
中國建設銀行資產總行風險管理部/資產保全部副總經理譚興民曾詳盡分析大數據何以幫助銀行提高徵信水平和風險管控能力:
首先,一站式徵信平台可以進行貸前客戶甄別。目前,銀行查詢客戶的情況既費時、費力,又增加銀行費用,而利用企業的一站式徵信平台,則可以最大限度地節省銀行的人力、物力及時間,並確保數據有效、及時、准確。
其次,風險量化平台可以助力貸後風險管控。平台基於企業日常經營數據,結合平台數據模型,採用動態、實時的雲端數據抓取技術,對企業的發展進行分析和評測,給出風險量化分數,並第一時間發現企業的生產經營異動,在風險觸發前3到6個月預警,使銀行等金融機構能夠及時採取相應措施,防止和減少損失發生。
同時,利用「企業族譜」查詢,對不良貸款進行監控。如一些企業通過關聯交易轉移利潤、製造虧損的假象,為不償還銀行貸款尋找理由;或者通過關聯交易製造虛假業績,為繼續獲得銀行貸款提供依據,這些假象通過關聯交易查詢,都可以很快發現蛛絲馬跡,讓企業造假暴露原形,可防止銀行上當受騙。
大數據風控相對於傳統風控來說,建模方式和原理其實是一樣的,其核心是側重在利用更多維的數據,更多互聯網的足跡,更多傳統金融沒有觸及到的數據。比如電商的網頁瀏覽、客戶在app的行為軌跡、甚至GPS的位置信息等,這些信息看似和一個客戶是否可能違約沒有直接關系,但實則通過大量的數據累積,能夠產生出非常有效的識別客戶的能力。
在運行邏輯上,大數據風控不強調較強的因果關系,看重統計學上的相關性是大數據風控區別於傳統金融風控的典型特徵。傳統金融機構強調因果,講究兩個變數之間必須存在邏輯上能夠講通因果。
在數據維度這個層級,傳統金融風控和大數據風控還有一個顯著的區別在於傳統金融數據和非傳統金融數據的應用。傳統的金融數據包括上文中提及的個人社會特徵、收入、借貸情況等等。而互金公司的大數據風控,採納了大量的非傳統金融數據。
相對於傳統金融機構,互金公司擴大了非傳統數據獲取的途徑,對於新客戶群體的風險定價,是一種風險數據的補充。當然,這些數據的金融屬性有多強,仍然有待驗證。
巨頭優勢明顯,並不代表創業公司的路已被堵死。大公司不可能面面俱到,布局各種場景。在互聯網巨頭尚未涉及的領域,小步快跑,比巨頭更早的搶下賽道,拿到數據,並且優化自己的數據應用能力,成為創業公司殺出重圍的一條路徑。
I. 大數據如何助力金融機構搭建風控模型
"MobTech是一家大數據智能科技公司,為金融機構提供不同場景下的解決方案。拿小額專貸款的案例來看,他屬們的一站式風控建模大數據平台,提供數據匹配,特徵篩選,模型迭代,自定義模型開發功能,模型管理部署,自動化模型上線API輸出等產品服務;提供針對小額借貸,消費金融、車貸等場景的成熟特徵,可定製化各類場景衍生特徵;覆蓋90%android設備。
可在雲端輕松構建出獨屬於自己的數據智能解決方案,也可通過私有化部署,加強數據的安全性。
J. 大數據對投資管理的影響
正在來臨的大數據時代,金融機構之間的競爭將在網路信息平台上全面展開,說到底就
是「數據為王」。誰掌握了數據,誰就擁有風險定價能力,誰就可以獲得高額的風險收益,最終贏得競爭優勢。中國金融業正在步入大數據時代的初級階段。經過多年的發展與積累,目前國內金融機構的數據量已經達到100TB以上級別,並且非結構化數據量正在以更快的速度增長。金融機構行在大數據應用方面具有天然優勢
一方面,
金融企業在業務開展過程中積累了包括客戶身份、資產負債情況、資金收付交易等大量高價值密度的數據,這些數據在運用專業技術挖掘和分析之後,將產生巨大的商業價值;
另一方面,金融機構具有較為充足的預算,可以吸引到實施大數據的高端人才,也有能力採用大數據的最新技術。
總體看,正在興起的大數據技術將與金融業務呈現快速融合的趨勢,給未來金融業的發展
帶來重要機遇。
首先,
大數據推動金融機構的戰略轉型。在宏觀經濟結構調整和利率逐步市場化的大環境
下,國內金融機構受金融脫媒影響日趨明顯,表現為核心負債流失、盈利空間收窄、業務定位亟待調整。業務轉型的關鍵在於創新,但現階段國內金融機構的創新往往淪為監管套利,沒有能夠基於挖掘客戶內在需求,提供更有價值的服務。而大數據技術正是金融機構深入挖掘既有數據,找准市場定位,明確資源配置方向,推動業務創新的重要工具。
其次,
大數據技術能夠降低金融機構的管理和運行成本。通過大數據應用和分析,金融機構能夠准確地定位內部管理缺陷,制訂有針對性的改進措施,實行符合自身特點的管理模式,進而降低管理運營成本。
此外,大數據還提供了全新的溝通渠道和營銷手段,可以更好的了解客戶的消費習慣和行為特徵,及時、准確地把握市場營銷效果。
第三,
大數據技術有助於降低信息不對稱程度,增強風險控制能力。金融機構可以擯棄原來過度依靠客戶提供財務報表獲取信息的業務方式,轉而對其資產價格、賬務流水、相關業
務活動等流動性數據進行動態和全程的監控分析,從而有效提升客戶信息透明度。
目前,先進銀行已經能夠基於大數據,整合客戶的資產負債、交易支付、流動性狀況、
納稅和信用記錄等,對客戶行為進行全方位評價,計算動態違約概率和損失率,提高貸款決策的可靠性。
當然,也必須看到,金融機構在與大數據技術融合的過程中也面臨諸多挑戰和風險。
一是大數據技術應用可能導致金融業競爭版圖的重構。信息技術進步、金融業開放以及監管政策變化,客觀上降低了行業准入門檻,非金融機構更多地切入金融服務鏈條,並且利用自身技術優勢和監管盲區佔得一席之地。而傳統金融機構囿於原有的組織架構和管理模式,無法充分發揮自身潛力,反而可能處於競爭下風。