導航:首頁 > 金融投資 > 互聯網金融實時數據

互聯網金融實時數據

發布時間:2020-12-29 09:36:34

⑴ 大數據和人工智慧在互聯網金融領域有哪些應用


數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。


大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。


數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。

1.價值導向與內嵌式變革—BCG對大數據的理解

「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。

1.1成就大數據的「第四個V」

大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。


雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。


另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。

「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?

BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。

1.2變革中的數據運作與數據推動的內嵌式變革

多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?


無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。


因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。

1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度


在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。

1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」


在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。

1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻


大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。

1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化


在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。


例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。

2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐


金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。

2.1大數據的金融應用場景正在逐步拓展

大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。

2.1.1海外實踐:全面嘗試

2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」


在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。


BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。


銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。


相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。


銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。


客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。


在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。


銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。


BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。


銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。

⑵ 大數據對互聯網金融的發展有什麼作用

自互聯網金融被廣而告之以後,大家就一直在被灌輸大數據在互聯網金融發展中的作用巨大,甚至最近更有專家說大數據是互聯網金融發展的加速器。但是似乎並沒有一個系統的說法,大數據具體有什麼用,我們只知道互聯網金融確實是其中的獲益者之一,下面且聽聽通金魔方分析師的見解。

我們首先從互聯網金融的含義生對大數據有個簡單的了解。正如互聯網金融之父謝平所言,所謂的互聯網金融,並非是簡單的將互聯網和金融進行疊加。

正確的理解應該是基於互聯網應用的特殊技術,推動了全新的商業模式,產品服務,對金融領域產生的顛覆性變革。在這其中,大數據則充當了很重要的推手。接下來我們來看一下大數據在互聯網金融發展中的作用體現。

精準的用戶分析

大數據的首要作用就是在於它能夠對用戶進行准確的分析,然後幫助互聯網金融找到合適的目標用戶,進而實現精準營銷。

在目前的互聯網金融領域,很多新興的企業,大多以做貸款或者金融衍生產品為主。其主打的賣點主要在於較高的投資收益或者較低的手續費優惠。但是在競爭日益加劇的市場環境下,由於不能保證資金流穩定,或者客戶粘性而倒閉的企業隨處可見。

據相關數據顯示,截止2013年底,中國境內共有450家P2P公司,其中有的甚至在創立幾天內即宣布倒閉。在這樣的基礎之上,實現精準營銷才是這些企業唯一的出路,這也正是大數據的作用所在。

雖然互聯網金融的發展仍然處於起步階段,但是卻已經有了相當豐富的成熟案例。比如通過定向技術查看用戶近期瀏覽過的理財網站,通過關鍵詞,瀏覽數據建立用戶模型,從而實現優化產品的實時推薦頻度,以便最大限度的鎖定有效用戶等。

幫助金融企業風險防控

除了以上的首要作用之外,大數據還能夠幫助金融企業加強風險的可控性。在精細化管理方面助推了互聯網金融,尤其是信貸服務的發展。

比如通過對大量網路交易及行為數據的分析,可以為用戶的信用評估提供可靠的依據。這些信用評估可以幫助金融企業在用戶的還款意願和能力方面做出較為准確的結論,以便決定是否繼續為該用戶提供快速授信或者現金分期等服務。從而最大限度的降低金融企業的業務風險。

當然,我們對於個人用戶或者企業用戶信用好壞的評定取決於諸多因素,但是我們也可以從這諸多因素中找到相應的數據。比如我們要尋找這個用戶的整體收入,固定資產,性格特點甚至是行為習慣等,那麼我們就可以從網上銀行,電商,社交網路,甚至招聘和婚介網站等地方獲取。

大數據的作用在這裡面得以體現的最關鍵的一點就是,這些所謂的數據往往都是以動態變數的形式存在的,而我們要想以此為依據獲得准確的信用評級,則更要倚重於大數據的持續分析功能。

通過上面的分析,我們也不得不承認大數據在互聯網金融發展中作用巨大,只不過在現在這個互聯網金融的起步階段,大數據作用的發掘仍不算完整,我們只能一步一步的在不斷的發展中發現它的好。

⑶ 互聯網金融運營需要關注的數據有哪些

如果您是做汽車金融行業的互聯網金融平台,您需要關注的有三個模塊大數據,有助於風控的運營管理。
1.人的大數據。藉助大數據風控管理分析平台,建立大數據反欺詐系統,從貸前、貸中、貸後各個階段進行有效的防範欺詐風險。從賬號風險防護、應用風險防護、欺詐信用風險防護等方面,有效識別騙貸、黑名單欺詐等手段,減少資金損失。對客戶行為從源頭進行風險評估,通過客戶在網路渠道留下的聯系方式開始,就啟動整個風控的過程,關聯客戶關鍵信息(如地址、電話號碼、聯系人信息等),從申請環節到授信環節藉助反欺詐系統降低有效反欺詐風險。
2.車輛鑒定大數據。二手車由於其非標准化運營,涉及到車輛評估,對車輛價值進行准確判斷才能在放款上不會出現「亂放」現象。通過第三方車輛評估鑒定,上傳車輛信息,對車輛查檔、估值、違章查詢、車史報告、VIN碼解析等等信息掌握。為汽車金融公司提供二手車數據內容、數據管理、二手車估值、數據挖掘等解決方案。
3.車輛監控大數據。通過行業第三方貸後雲風控平台的監控,呈現車輛的日常行為軌跡,利用監控平台的大數據預警信息,密切掌握借款人的動向。通過建立風控模型,針對借款人的貸後車輛行為,通過豐富的預警機制,可以科學的預測整個周期內的風險。根據車輛停留點分析、常用地址比對、敏感區域資料庫等大數據分析,對車貸行業的功能場景進行針對性設計,能有效的遏制資料欺詐、二次抵押等不良現象發生。可幫助汽車金融公司建立完整的貸後風控管理體系。

⑷ 互聯網金融大數據風控哪家好

北京永洪商智科技有限公司,國內領先的數據可視化分析解決方案提供商,為百億內級數據量的大型企業容和各個垂直行業的中小企業提供靈活的數據分析解決方案。專注於讓企業用戶實現敏捷的數據化運營,實時洞察業務狀況,支持戰略決策。擁有分布式計算、分布式存儲、分布式通信、雲計算、數據處理、數據展現等多項技術專利。

⑸ 互聯網金融運營需要關注的數據有哪些

由於互聯網金融概念較為寬泛,支付、投資理財、信貸、徵信、虛擬貨幣發行(比特幣等)、金融產品搜索等不同領域所關注的核心指標並不相同;即便是相同領域 的公司,由於核心業務模式的差異導致大家所關注指標也不相同。因此從運營角度來看,最靠譜的是結合公司的核心業務模式來歸納運營指標。

互聯網金融公司的金融屬性,從經營風險的角度來看,風險貫穿互聯網金融公司的企業日常運營、IT平台運營等過程,這與普通互聯網公司的運營主要關注產品運 營有極大不同,因此以下所指的運營並不單純指普通互聯網公司的運營部門的運營,而是從整個互聯網公司企業運營角度來說的。

根據互聯網共性可以總結出對應量化指標體系:
1、用戶指標:包括用戶信用評級、活躍度、留存率、轉化率、客單價(平均投資額度)、用戶分布(各等級佔比)、互動指標等等。
2、產品指標:產品組合、投資人數、投資金額、滿標時間、收益率、流標數、風險系數、熱度(受歡迎度)等等。
3、營銷渠道指標:渠道來源、渠道轉化率、渠道成功率、渠道成本等等
4、營銷活動指標:活動成本、活動渠道來源、活動轉化率、傳播數、新增粉絲數/用戶數等等
5、合作方指標:合作帶來的項目數、項目通過率、風險系數、成本等等
6、風控指標:項目審核通過率、風險備用金、項目流動性風險指標、合規相關指標等等
7、支付渠道指標:渠道轉化率、渠道成功率、支付渠道來源、渠道成本等等
8、IT平台指標:用戶體驗指標(包括響應速度等)、可靠性指標、安全性指標等等。這塊與互聯網的指標類似。
9、客服指標:投訴分類、接通率、投訴渠道、響應速度、滿意度等等
10、競爭性指標:競爭對手分析指標、互聯網輿情監控指標等等

運營不要只關注那些數據,數據是外在的,是基礎,而產品和平台核心競爭力才是發展的王道,數據+產品,找到平台最優的發展平衡點,才是運營下的這盤棋的目的。

⑹ 大數據和人工智慧在互聯網金融領域有哪些應用

大數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化(Capitalization)。

大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。

數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與模型;IT發布新洞察;業務應用並衡量洞察的實際成效。

在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。

⑺ 互聯網金融數據在哪兒下載啊找的好睏難

金融數據有很多鍾,復一般的什麼制金融app都有免費的金融信息,最新的新聞資訊。比較好的有的要收錢的,比如有的額炒股軟體只有給錢或者 是會員才能看到最新最及時的詳細信息。

現在的信息比較發達,也有的交易中心有免費這樣的數據,網路東湖大數據就能找到

⑻ 如何進行互聯網金融運營數據的分析,都有哪些方法

來源於:知乎
大部分的互聯網金融公司最為糾結的一點是,流量這么大,獲客成本這么高,為什麼最後的的轉化率和成單量卻這么低?怎樣才能提高用戶運營效率?用戶行為數據分析怎樣把處在不同購買決策階段的用戶挑選出來,幫助互聯網金融公司做到精益化運營?
我們的客戶中很大一部分來自互聯網金融,比如人人貸等行業前 10 的互聯網金融公司。在服務客戶的過程中,我們也積累了大量的數據驅動業務的實踐案例,來幫助客戶創造價值。
一 、互聯網金融用戶四大行為特徵
互聯網金融平台用戶有四大行為特徵:
第一流量轉化率低,下圖是某互聯網金融公司網站上,新客戶過去 30 天整體購買轉化漏斗,其轉化率只有 0.38%:
而這並非個例,實際上,絕大多數互聯網金融公司,在 web 端購買的轉化率基本都在 1% 以下,APP購買率在 5% 左右,遠遠低於電商或者其他在線交易的購買率。
第二,雖然轉化率低,但是客單價卻很高。一般來說,電商行業客單價在幾十到幾百,而互聯網金融客戶,客單價從幾千到幾萬,某些特殊領域甚至高達幾十萬。而客單價高,就意味著用戶購買決策會更復雜,購買周期也會更長。
第三,用戶購買行為有很強周期性。電商的客戶下次購買時間是不確定的,但是互聯網金融平台上,真正購買的用戶,是有理財需求的用戶,在資金到期贖回產品後,一定還會進行下一次購買,只不過未必發生在你的平台上。
可以看到,每隔一段時間,這個用戶就會有一段集中的、大量的交互行為。當用戶購買完成後,用戶的交互行為又變得很少,可能偶爾來看看產品的收益率,但整體的交互指標不會太高,直到他下一次購買。這個用戶理財需求的周期是一個月左右。

最後一個特點是「很強的特徵性」,主要包括兩個特徵:
A:用戶的購買偏好比較容易識別,理財產品數量和品類都很少,所以用戶購買的需求或者偏好,很容易從其行為數據上識別出來。
B:用戶購買過程中的三個階段特別容易識別:
用戶在購買決策階段,有大量的交互事件產生,他會看產品,比對不同產品的收益率和風險,比對不同產品的投資期限等等;
但是一旦他完成了產品的購買,就不會有大量的交互行為產生,他可能僅是回來看一看產品的收益率。
當用戶的產品資金贖回之後,又有大量的交互事件產生,實際上他處在下一款產品購買的決策期。
二、互聯網金融用戶運營的三大步驟
針對互聯網金融用戶行為的四個特徵,在用戶運營上有三個比較重要的階段性工作:
1.首先,獲取可能購買的目標用戶,合理配置在渠道上的投放預算,以提高高質量用戶獲取的比例:
渠道工作的核心,主要是做好兩方面的工作:宏觀層面,優化整個渠道的配置;微觀層面,單一渠道角度來說,根據渠道配置的策略,有針對性地實施和調整。
具體渠道的實施,大家都比較熟悉,但是對於整個渠道組合配置的優化,很多人接觸的其實並不多。
這張圖是整體轉化漏斗,從不同維度可以做對比,比如我們先選出流量前 10 的渠道:
以渠道一為例,總體的轉化率是 0.02%;在過去 30 天站內總體的流量是 18.9K,漏斗第一級到第二級的轉化率是 3.36%,這樣一共是五級,我們看到最終渠道一帶來總體的成交用戶一共是 4 人。
類似的,前 10 的渠道數據都很清晰。不同渠道帶來的流量,不同渠道總體的轉化率,以及不同渠道在整個轉化路徑上每步的轉化率都可以看到。
這裡面有幾個渠道很有特點:
渠道一的特點,渠道一帶來的流量是所有 10 個渠道里最大的,但是它的總體轉化率卻是低的;
渠道二和渠道七,渠道二的量很大,但是轉化率是零。渠道七量比較一般,轉化率也是零;
渠道九和渠道十,這兩個渠道是所有渠道里轉化率最高的。但是這兩個渠道特點,是帶來流量不是特別大……
第一象限(右上角)渠道質量又高,帶來流量又大的,這裡面渠道三四五是符合這個特徵的,渠道策略應該是繼續保持和提高渠道的投入。
第二象限(左上角)渠道的質量比較高,但帶來的流量比較小,這裡麵包含的主要渠道就是八九十。對應的主要策略是,加大渠道的投放,並且在加大投放的過程中,要持續關注渠道質量的變化。
我們先看第四象限(右下角),渠道質量比較差,但是帶來流量比較大,這裡面主要有渠道一和渠道二。相對應的渠道策略,應該在渠道做更加精準的投放,來提高整個渠道的質量。
第三象限(左下角)這個象限里渠道質量又差,帶來流量又小,比如渠道六跟渠道七。我們是否要直接砍掉?這里建議是,策略上要比較謹慎一些。所以在具體渠道的策略上,業績保持監測,然後小步調整。
根據上面數據分析得出的結果,做過渠道優化後,就會為我們帶來更多高質量的用戶。
2.接下來就要把高價值的用戶——真正有購買需求,願意付費、購買的用戶找出來。
將資源與精力投入到真正可能購買的用戶上的前提是,我們要能夠識別出,哪些是真正有價值的用戶?哪些是價值偏低的用戶?
其實對於互聯網金融平台來說,甚至所有包含在線交易的平台,用戶的購買意願,是可以從用戶的行為數據上識別出來的。由於互聯網金融平台的特殊性,相比於電商平台來說,商品品類更少,平台功能也更為簡單,所以用戶的行為數據,也更能反應出互聯網金融平台上用戶的購買意願。
把用戶在平台上的所有行為總結一下,核心的行為其實並不多,具體包括:
用戶查看產品列表頁,說明有一些購買意願,點擊某個產品,說明用戶希望有進一步的了解。用戶最終確認了支付,完成了購買,購買流程就走完了,他的理財需求已經得到了滿足。每一種行為都表示出用戶不同程度的購買意願,所以獲得用戶在產品里的行為數據就十分重要。
既然用戶行為數據這么重要,那麼怎樣獲取呢?GrowingIO 以無埋點的方式,全量採集用戶所有的行為數據,根據我們對業務的需求,配比成不同的權重系數,並按照每個用戶購買意願的強弱,進一步分群。
這是我們一個客戶製作的用戶購買意願指標的範例,剛才的前 5 個行為,都是用戶在購買前典型的行為:
每種典型事件的權重系數不一樣,用戶購買意願是越來越強的:用戶點了投資按紐,甚至點了提交的按鈕,顯然要比他單單看產品列表頁,或者單單看產品頁、詳情頁的意願強。越能反應用戶購買意願的事件,你給它分類的權重應該是最大的,這是大的原則,0.05 還是 0.06 影響並不大,所以不必糾結。
這樣通過這種方式,我們就可以按照每個用戶的所有行為,給用戶做購買意願打分的指標,最終形成用戶購買意願的指標。
這是我們從高到低截取部分用戶購買意願打分的情況,第一列是每個用戶的 ID,第二列是按照購買意願給每個用戶打分的情況。得分高的,就是購買意願最強烈的用戶。
拿到所有用戶購買意願之後,我們就可以按照用戶購買意願的強烈與否,把所有的用戶分成不同的群體,來做針對性的運營。
這是在把用戶在過去 14 天內,由其產生的所有行為數據,按照購買意願打分的權重,把打分大於 5 的用戶找出來,在總體用戶里,這部分用戶購買意願排名前 20% ,我們給它起個名字,叫購買意願強烈的用戶。
類似我們還做了購買意願中等的用戶分群,這是購買意願排名在 20-60% 之間的用戶;購買意願排名在最後 40% 的用戶,是購買意願最弱的用戶分群。
分群之後,點擊任意一個分群,都會以用戶 ID 的形式列出來。因為你要有用戶的 ID ,才能對這些用戶施加運營策略。每個用戶最近 30 天的訪問次數,最近的訪問地點,最後一次訪問時間都可以看到。
接下來針對這些購買意願強烈的用戶,怎樣推動用戶的轉化呢?
3.採取針對性的運營策略,提高高價值用戶的轉化率。
首先我們來看一下購買偏好,互聯網金融平台商品品類是比較少的,用戶購買的目的性也比較清晰,一般商品的品類有這么幾種:
第一種:債券型理財產品
第二種:股票型理財產品
第三種:貨幣型理財產品
第四種:指數型理財產品
第五種:混合型理財產品…
我們把用戶在不同品類商品上的訪問時長佔比算出來,就能比較好地了解用戶的購買偏好。比如下圖,我們用用戶訪問債券型產品詳情頁的訪問時長,除以用戶在站內總體的訪問時長,就能夠得到用戶在債券產品上訪問時長佔比的指標。
我們還是使用用戶分群的工具,把在債券型產品上的訪問時長佔比大於40%的用戶分出來,這是有非常強烈表徵的客戶,他購買的偏好就是債券型的產品。
同時我們再設定另外一個指標,比如用戶購買意願指標,之前我們做過大於5,也就是購買意願排名在前 20% 的。
通過這兩個條件,我們就可以把購買偏好是債券型產品,同時有強烈購買意願的用戶找出來,這兩個指標的關系是並(and)的關系。同樣我們可以按照用戶的購買偏好,把關注其他品類的用戶,都做成不同的用戶分群,然後形成不同購買偏好的用戶群體。
針對這些用戶,其實在運營策略上,我們可以從三個層面來展開來進行做:
從購買階段的角度,首先我們把所有用戶可以分成新客和老客。對於這兩個群體來說,運營策略和運營重點是非常不一樣的。
新客群體,是從來沒有在平台上發生過購買的用戶,我們要根據用戶的購買意願,做進一步的運營。
老客群體,也就是在平台上已經發生過產品購買的用戶,除了關注用戶的購買意願之外,用戶的資金狀態(資金是否贖回)也是非常重要的參數。
用戶是否購買過產品?購買產品的用戶是否已經贖回資金?這兩個內容,其實是一個用戶當前的屬性。在我們分群的工作里,這有個維度的菜單,通過這個維度菜單,我們就可以把具有某種屬性的用戶找出來:
這里我做了一個分群,我們可以看一下。在維度的菜單里,我們把是否購買過產品的維度值設置成了 1 。把資金是否已經贖回這個維度的值,也設置成了 1 。實際上是把那些資金已經贖回的老用戶找出來;同樣在指標這個菜單里,我們同時也把有強烈購買意願的用戶找出來,時間是過去 14 天,指標大於 5 。
這樣我們就製作了一個用戶分群,而這個用戶分群里所有用戶,要滿足下面的三個特徵:
特徵一:購買過產品的老客。
特徵二:他們的資金,目前已經贖回了。
特徵三:過去 14 天內的行為數據,表明這個用戶有著強烈的購買意願。
同理我們把所有用戶,整理為下面幾個不同類別,對應不同的運營策略:
比如新客里,當前有購買意願的,其實他屬於購買決策期的新用戶。應該根據用戶的購買偏好,推薦這種比較優質的理財產品。並給予一定的購買激勵,來促進這些新客在平台上的第一次購買,這個對於新客來說是非常重要的,以此類推。
相比於電商或者其他行業,互聯網金融平台結合行業和用戶的特點,從用戶行為數據分析的角度,驅動產品業務以及提高用戶的轉化率,有更加重要的意義。

⑼ 如何進行互聯網金融運營數據的分析

做運營必須要對數據敏感,以下指標需要關註:
1、用戶注冊數,首先你要知內道你的注冊數據
2、注容冊成本,就是單個用戶成功注冊的成本
3、投資成本,就是注冊用戶到投資的成本
4、復投率,這個很重要,投資人數再多,如果沒有復投意義不大,因為拉新的成本比留住老用戶要大的多。
5、ROI,其實說了這么多,企業管理者就看重一個指標就是投資回報率,衡量一個推廣渠道的優劣,這個是核心指標
知道了哪個渠道的ROI最高,就可以對你的推廣策略做參考,這樣就能形成良性循環。

⑽ 大數據金融是不是互聯網金融

大數據並不是單指互聯網金融。

大數據金融是指依託於海量、非結構化的數據,通過互聯網、雲計算等信息化方式對其數據進行專業化的挖掘和分析,並與傳統金融服務相結合,創新性開展相關資金融通工作的統稱。

大數據金融擴充了金融業的企業種類,不再是傳統金融獨大,並創新了金融產品和服務,擴大了客戶范圍,降低了企業成本。大數據金融按照平台運營模式,可分為平台金融和供應鏈金融兩大模式。兩種模式代表企業分別為阿里金融和京東金融。

拓展資料:

互聯網金融行業面臨大洗牌

在去杠桿的嚴監管的大背景下,近期信用風險事件頻頻爆發,根據網貸之家的數據顯示,自6月以來,P2P行業新增問題平台133家,其中95家發布了相關逾期或停業兌付公告。

違約事件頻發的主要原因1)隨著市面上資金收緊,一些資質較差的企業出現債務違約,影響到相關P2P平台2)一些產品不合規、風控能力較差的平台,高返利的平台受到資金收緊的影響資金鏈斷裂3)P2P平台頻繁暴雷,引發投資者恐慌性擠兌,一些運營良好的P2P平台受到波及導致兌付困難。

短期來看行業集中暴雷會導致行業承壓,另一方面隨著不良企業出清,風控良好、經營合規的頭部互金公司有望迎來快速發展,互聯網金融企業能夠服務一些傳統金融機構難以觸及的領域作為傳統金融機構有效補充,隨著百行徵信建立,徵信體系的逐漸完善,預計行業風控能力將顯著提升,重點關注行業頭部企業

閱讀全文

與互聯網金融實時數據相關的資料

熱點內容
銀行貸款日利息怎麼算 瀏覽:211
什麼是互聯網基金產品 瀏覽:688
私募基金的主要策略 瀏覽:211
外匯Ham 瀏覽:178
錢吧理財 瀏覽:684
中郵穩定收益A基金 瀏覽:851
企業投資管理辦法 瀏覽:388
外匯什麼指標最准 瀏覽:291
招商銀行滬深300理財怎麼樣 瀏覽:967
投融資會上的講話 瀏覽:45
富國互聯科技股票基金封閉期 瀏覽:120
bf一款神奇的游戲理財 瀏覽:11
招商融資發布會 瀏覽:20
租賃表外融資 瀏覽:575
中國股票價格為什麼高 瀏覽:803
適合20歲怎麼理財 瀏覽:83
理財保險的意義與功用 瀏覽:533
黃金藤價格價格 瀏覽:503
85港幣摺合人民幣是多少人民幣 瀏覽:505
江蘇八方貴金屬軟體下載 瀏覽:344