1. 為什麼說正態分布在經濟領域應用廣泛
正態分布在經濟領域的廣泛應用:
1.財務會計研究領域
隨著金融市場和現代企業制度的建立,財務會計向企業外部提供的財務信息倍受各利益關系人關注,而「財務會計信息有沒有用」這樣一個挑戰性的問題出現了。所以早期的實證會計研究主要是從有效市場假設(EMH)和資本資產定價模型(CAPM)出發,檢驗財務會計數據與其他經濟指標(特別是股價)的關系,如果財務會計指標(特別是會計收益指標)與股票價格相關,則說明會計信息的披露對證券市場的資源配置功能有效。後來這一結論被實證研究所證實,這有效地駁斥了「會計無用論」,從而奠定了實證會計研究的地位。近年來,會計政策選擇成為實證會計研究的重心,以解釋和預測企業「為什麼會選擇這種會計政策,而不採取那種會計政策」。例如:會計政策選擇與企業規模、地區分布、資本結構、分紅計劃。債務契約的關系;企業的外部利益關系人對會計信息反應的研究等,如果將上述問題給予抽象,它們都涉及「變數間的相互關系」這樣一個可以歸結為數學的問題。所以,針對上述問題,在研究隨時間變化、具有隨機性而又前後相互關聯的動態數據時,用到時間序列分析,它包括建立時間序列模型(ARIMA模型)、參數估計及譜估計等理論與方法。在討論多元變數之間是否存在線性相關時,運用多元線性回歸模型、典型相關分析和殘差檢驗。由於正態分布在會計數據中廣泛存在,例如,以任一會計科目作為總體,則不同時期該科目數額特別巨大和特別小(如為零)的比較少,則可以視之符合正態分布等,所以與正態分布相關的檢驗方法被大量使用:檢驗母體均值與原假設均值是否具有顯著差異的U一檢驗,檢驗兩個母體均值是否相等的T一檢驗,檢驗母體的方差與原假設方差是否具有顯著差異的X2一檢驗,檢驗兩個正態母體方差是否相等的F一檢驗。對不確定的母體分布採用非參數統計方法,如非參數檢驗。國外實證研究證實股票價格波動具有馬爾可夫性,即在有效的資本市場中現在的股票價格已反映了以往和現在的全部經濟信息,以前的股價行料對將來的股價波動不再具有信息價值,「將來」只與「現在」有關,而與「過去」無關。解決這方面問題的模型有:回歸一馬爾可夫模型、隨機游動模型。
2.理財、管理會計研究領域
現代理財論,總的說來是圍繞估價問題而展開的,這里所說的估價,既包括對個別「資本資產」的估價,也包括對企業總體價值的估價。如探討投資風險和投資報酬的投資組合理論(Portfolia Theory),後來該理論又發展為資本資產定價模型(CAPM),套利定價理論(Arbitrage Pricing Theroy)、探討資本結構與企業總價值關系的資本結構理論(Capital Structure Theory)、MM(Modigliani, Miller)理論、米勒模型(Miler Model)等。其中廣泛應用了微積分、線性代數及概率論與數理統計。針對創新金融工具的估價模式——期權定價模型則廣泛地應用了偏微分方程、隨機微分方程及倒向隨機微分方程等較為先進、復雜的數學理論與方法。
管理會計主要是利用信息來預測前景,參與決策。籌劃未來,控制和評價經濟活動等,保證以較少的勞動消耗和資金佔用,取得較好的經濟效益。管理會計應用的數學方法也相當廣泛,例如預測成本和銷售額時採用回歸分析,評價企業財務狀況、投資效益時採用層次分析法,預測經營狀況是採用具有吸收狀態(企業破產)的馬爾可夫鏈。另外還有「經濟定貨量」模型、「經濟生產量」模型、敏感分析、彈性分析等,則是應用微分學解決經濟問題的一些典範。管理會計中許多問題可以歸結為:數學分析中的極值問題;數學規劃中一定約束條件下的目標函數的最值問題;馬爾可夫相關理論問題;在約束條件和目標函數不能用線性方程或線性函數表示時的非線性規劃問題;在解決多階段決策問題時的動態規劃問題;解決如何經濟、合理地設置服務設施,從而以最低成本最大地滿足顧客需要問題時的排隊論問題,如人力資源選擇,機器設備選購等;導源於宏觀經濟管理並在微觀經濟管理中也有廣泛地應用的投入——產出分析問題,例如,用於多階段生產條件下生產與成本計劃的制定。
3.審計研究領域
審計主要是通過對財務會計信息的鑒證,以增強信息使用者對財務會計信息信任程度。在審計中最常用的數學方法是抽樣技術。隨著統計科學和企業規模的不斷發展,許多會計公司將統計抽樣理論與審計相結合,設計出了審計抽樣技術。對受審單位的內部控制制度有效性進行符合性測試時,採用屬性抽樣,如連續性抽樣,發現抽樣。在實質性測試中採用變數抽樣,如分層隨機抽樣及累計概率比例抽樣法(PPS),這對於減少審計風險和成本,提高審計工作效率和效果意義重大,因為嚴格遵循隨機原則抽取樣本,根據總體容量、誤差率、精確度、可信水平等因素綜合分析得到樣本容量,其分布規律更加接近於審計總體的分布規律。另外,在預測突發事件或不確定性問題時,歷史數據或既定的模型並不能完全反映它們,在這種情況下還要結合專家的專業判斷、經驗進行預測,也就是說,這一步的後驗分布又是下一步先驗分布的基礎,不斷對模型進行修正使之「動態化」,以提高預測精度。近年來,判別分析模型和聚類分析模型在國外也開始引入審計研究領域。對於定性資料的統計分析方面,Logit模型和probit模型被廣泛應用,例如用於預測注冊會計師簽署審計意見類型等。
值得注意的是,當人們尋求用定量方法處理復雜經濟問題時,容易注重於數學模型的邏輯處理,而忽視數學模型微妙的經濟含義或解釋,實際上,這樣的數學模型看來理論性很強,其實不免牽強附會,從而脫離實際。與其如此,不如從建模型一開始就老實承認數學方法的不足,而求助於經驗判斷,將定性的方法與定量的方法相結合,最後定量。
2. 請問考金融數學的時候有給出正態分布的值嗎沒有給出的話要怎麼算呢
放心吧!生命表,需要用到的分布的分布表,分布的分布式及其基本性質都會提供給你,你不用擔心這些。
3. 正態分布論的應用有哪些呢
事實上正態分布不可能徹底地從金融中消失。正態分布被詬病的原因,無外乎其兩個局限-缺乏分布的不對稱性(偏離均值同樣大小的損失與盈利同概率)以及缺乏厚尾性.+但是目前並未有能夠為業界廣泛接受的可以克服以上缺點的金融收益率模型。相反,許多提出來的所謂的厚尾分布,如NIG,normal mixture,variance gamma等,其實都不過是正態分布在某種意義上的推廣。還有credit model中用來替代Gaussian Copula的random factor loading,也只不過是在前者的基礎上,使market factor loading由常數變為market variable dependent,其核心依然是Gaussian Copula.+由於正態分布良好的解析性質,以及由中心極限定理保證的其在分布族中的特殊地位,即使在許多應用中直接套用正態分布並不合適,它也是很好的一個benchmark和starting point.+如果徹底摒棄正態分布,許多金融模型就會成為無源之水,無根之木。
4. 求助!基金從業關於分位數正態分布的問題解釋
這是一個常數。1.65處,對應的正態曲線,形成的面積正好是5%分位。書上例子就是一模一樣的題。
5. 漸進正態分布的概念
漸進分布是指某種特定分布的大樣本性質,即在樣本量足夠大時的極限分布。
所謂大樣本是指能夠滿足中心極限定理的要求下,使抽樣分布趨向於正態分布的樣本容量。大樣本的具體數目應該根據總體分布情況,採用的估計方法和對估計精度的要求具體予以確定,很難用一個具體的數值進行界定。
在金融工程領域,樣本的概率分布未必能夠呈現出嚴格的正態分布,往往呈現出有偏的漸進正態分布;在金融參數估計時,一般也需要通過對漸進分布的研究確定恰當的統計量,這是統計量的大樣本性質以及漸進分布顯得尤為重要。
正態分布(Normal distribution),也稱「常態分布」,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二項分布的漸近公式中得到。C.F.高斯在研究測量誤差時從另一個角度導出了它。P.S.拉普拉斯和高斯研究了它的性質。是一個在數學、物理及工程等領域都非常重要的概率分布,在統計學的許多方面有著重大的影響力。
正態曲線呈鍾型,兩頭低,中間高,左右對稱因其曲線呈鍾形,因此人們又經常稱之為鍾形曲線。
若隨機變數X服從一個數學期望為μ、方差為σ^2的正態分布,記為N(μ,σ^2)。其概率密度函數為正態分布的期望值μ決定了其位置,其標准差σ決定了分布的幅度。當μ = 0,σ = 1時的正態分布是標准正態分布。
6. 正態分布在金融中是否還有應用和發展的必要
當然有啊,如保險就會用這個,比如某年齡階段患某病的風險。
7. 金融學哪方面要用到正態分布還是不用
金融學會應用到很多統計學的知識 其中正態分布是統計學中最常用的分布 在估算風險 估計數據回歸方程等方面都會用到
8. 遇到一個正態分布 N(0,0,16,25,0),一般不都兩個參數嗎這里五個參數什麼意思
這個是二維的正態分布,前面兩個參數是X1,X2的均值,16,25是X1,X2的方差,0代表二者的相關系數,這里獨立。
μ是正態分布的位置參數,描述正態分布的集中趨勢位置。概率規律為取與μ鄰近的值的概率大,而取離μ越遠的值的概率越小。正態分布以X=μ為對稱軸,左右完全對稱。正態分布的期望、均數、中位數、眾數相同,均等於μ。
(8)公司金融正態分布擴展閱讀:
由於一般的正態總體其圖像不一定關於y軸對稱,對於任一正態總體,其取值小於x的概率。只要會用它求正態總體在某個特定區間的概率即可。
為了便於描述和應用,常將正態變數作數據轉換。將一般正態分布轉化成標准正態分布。 服從標准正態分布,通過查標准正態分布表就可以直接計算出原正態分布的概率值。故該變換被稱為標准化變換。(標准正態分布表:標准正態分布表中列出了標准正態曲線下從-∞到X(當前值)范圍內的面積比例。)
9. 金融管理及風險機構題:監管人員在計算DLC銀行時,假定收入回報服從正態分布,均值為60萬美元,標准差
是這個標准,差的話,我覺得是非常好計算的,因為本身來說是有個控制一紅
10. 金融數據的尖峰厚尾特徵是什麼意思
金融數據的尖峰厚尾特徵是相比較標准正態分布來說的,標准正態分布的偏度為0,峰度為3,通常做實證分析時,會假設金融數據為正態分布,這樣方便建模分析。
但是實證表明,很多數據並不符合正態分布,而更像尖峰厚尾,就是峰度比3大,兩邊的尾巴比正態分布厚,沒有下降得這么快。
厚尾分布主要是出現在金融數據中,例如證券的收益率。 從圖形上說,較正態分布圖的尾部要厚,峰處要尖。
直觀些說,就是這些數據出現極端值的概率要比正態分布數據出現極端值的概率大。因此,不能簡單的用正態分布去擬合這些數據的分布,從而做一些統計推斷。一般來說,通過實證分析發現,自由度為5或6的t分布擬合的較好。
(10)公司金融正態分布擴展閱讀:
基金收益率不服從正態分布,存在顯著的尖峰厚尾特性,我國基金市場還不是有效市場。人民幣匯率收益率波動有集群性效應,不符合正態分布,有尖峰厚尾的特點。結果表明穩定分布能更好的擬和中國股票收益率的實際分布,穩定分布較好的處理中國股票市場中的「尖峰尾」現象。
但很多資本市場上的現象無法用EMH解釋,如證券收益的尖峰厚尾,證券市場的突然崩潰,股價序列的長期記憶性等。對期貨價格數據進行統計分析,發現期貨價格具有「尖峰厚尾」特性。實證結果表明:我國股價波動具有尖峰厚尾特徵、異方差性特徵和波動的持續性和非對稱特徵。
而股票市場的收益率從分布的角度看,並不服從標準的正態分布,而是呈現出一種「尖峰、厚尾」的特徵。