導航:首頁 > 金融投資 > 城市大數據金融服務平台落地福建

城市大數據金融服務平台落地福建

發布時間:2021-01-04 08:44:07

⑴ 阿里小貸是基於大數據的金融服務平台模式么

1.
據說是這樣的,我自己沒有經歷過
2.
相似的可以看看
網商銀行,今年6.25剛成立的

⑵ 阿里小貸是基於大數據的金融服務平台模式么

是的,基於大數據。
延伸(來自公開):
14年2月20日,阿里金融旗下阿里小貸首次向外界透露了其獨特的大數據授信審貸模型——水文模型。
水文模型的學術定義是將自然系統符號化,通過數學模型模擬水文現象。
而阿里小貸的水文模型,可以理解為建立龐大的資料庫,不僅包括貸款客戶自身長期的數據變化,還有參考同類企業的數據情況,以這些數據為依據,通過數學方法以及各種參數,判斷客戶未來的情況。
最終在阿里小貸業務決策中,水文模型將為公司決策層提供客觀的分析和建議,並對業務形成優化。
舉例來說,如果某個店鋪的旺季是夏天,每年夏天銷售都大幅增長,那麼每年夏天,這個店鋪對外投放額度也就會上升。通過阿里小貸的水文模型,可以按照歷史數據,判斷出這一店鋪在這一時期的資金需求。
同時,對比該店鋪其他時間的數據,判斷出該店鋪各個時段的資金需求,從而向店鋪給出恰當的貸款。
相反,如果不進行對比,只是以夏天銷售旺季的數據作為依據,那很可能為該店鋪提供過多資金。
在水文模型的幫助下,阿里小貸迅速發展,2014年2月,阿里小貸累計投放貸款超過1700億元,服務小微企業超過70萬家,不良率小於1%。其中,2013年新增貸款1000億元。
不過阿里的水文模型可能只是用於阿里這樣的互聯網金融公司,對傳統小額貸款公司來說,這一模型有一定壁壘。
阿里小貸主要是淘寶貸款和阿里貸款,提供的服務主要是淘寶(天貓)信用貸款、訂單貸款以及阿里信用貸款,和傳統小額貸款公司不同,阿里的客戶主要是淘寶、阿里巴巴上的店鋪,由於這些店鋪通過淘寶和阿里巴巴平台經營,所以阿里小貸可以輕易獲得客戶的歷史數據。
大數據的優勢,可能只有網路、騰訊這樣同一級別的互聯網巨頭可以媲美。目前網路小貸公司也已在2013年9月獲批,服務對象優先考慮網路推廣的客戶;騰訊旗下財付通的財付通小貸於2013年11月獲批,財付通小貸目標客戶是騰訊旗下電商企業。
網路和騰訊本身互聯網基因以及旗下小貸公司的目標客戶,決定了他們可以和阿里小貸一樣建立完善的資料庫,並建立大數據模型。這是傳統小額貸款公司所不具備的。
或許當互聯網小貸公司建立完備的大數據模型以後,一場小額貸款的互聯網VS實體公司的戰役將展開。

⑶ 大數據平台的運營模式有哪些

這裡面涉及到3個方面的專業常識問題。
第一個是大數據;
第二個是平台,以及大數據平台;
第三個是運營,以及運營模式。
我們先來看第一個問題,大數據。「大數據」的定義很多,也很泛。但是都沒有錯,因為出發點不一樣。有的站在研究的角度,有的站在學術的角度,有的站在市場的角度,那麼比較客觀的定義,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。它的特點,首先是它的價值取向,沒有可以利用的、可以挖掘的數據再大也不叫大數據;另外看它的海量和精準性,海量數據不等於大數據;還有就是在線性,再多的數據,如果沒有在線性的特點,那隻能算區域網裡面的陳冗信息。
第二個問題,平台,就是在線化的生態體系,才可以叫平台。如果沒有在線,如果緊緊是孤立存在的,是不能稱為大數據平台的。既然叫平台,而且是大數據平台,其在線化以及基於整個數據的抓取、挖掘和再利用等方面應該有一個整體規劃,這樣的情況下才可以叫平台運營。
第三個問題,對於運營的理解,無論有多少種介紹和解釋,運營都分為宏觀和圍觀的兩種理解。宏觀的,叫綜合運營,是戰略和戰術整體結合的層面;微觀的,叫產品運營,然後再細分為內容運營、用戶運營、活動運營等;
所以,要像搞清楚運營模式,需要前面先定準以上內容。
如果宏觀上的運營模式,主要是看整體商業模式的定位。包括如何推廣、如何獲取數據、如何挖潛數據;如何讓平台贏利,並最終實現平台的價值;
微觀的運營模式,主要是三步走的策略,具體就是拉新、留客、激活、反復再拉新、激活、留客等,不斷地增加粘度、增加客戶的使用感受,增加平台的娛樂性、增強客戶的2次使用和再分享推廣傳播的策略。

⑷ 大數據可以應用在哪些方面

可以應用在雲計算方面。

大數據具體的應用:

1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。

5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。

7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。

8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。

9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。

10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。

(4)城市大數據金融服務平台落地福建擴展閱讀:

大數據的用處:

1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。

自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。

參考資料:

網路--大數據

⑸ 大數據金融前景

一、大數據金融的含義
大數據金融指的是將巨量非結構化數據通過互聯網和雲計算等方式進行挖掘和處理後與傳統金融服務相結合的一種新的金融模式,它是一種相比於傳統金融更加透明、參與度更加廣泛、體驗更好、效率更高的新興金融模式。
廣義的大數據金融包括整個互聯網金融在內的所有需要依靠發掘和處理海量信息的線上金融服務。也就是說,我們所提到的不管是P2P還是眾籌等互聯網金融行為,其核心都是大數據金融,因為互聯網金融如果沒有大數據的支撐,就成了一個單純意義上的平台。而互聯網金融得以在互聯網誕生之日起,到今天人類社會進入「PB(1024TB)」時代,歷年來數據信息的記錄與積累,以及雲計算技術的不斷成熟,使得大數據金融在互聯網誕生數十年後終於可以一展風采。持續高增長的電子交易數量和網路零售服務,使得依賴於商務需求的金融體系能夠在線上尋求到數據支撐。

狹義上的大數據金融指的是依靠對商家和企業在網路上歷史數據的分析,對其進行線上資金融通和信用評估的行為。我們可以很直觀地看到,最初在互聯網平台上尋求到金融服務的商家和企業,一類是在互聯網平台上留下了一定數量的歷史信用信息的商家或企業,另一類是在相關產業之內積累了相當程度的歷史信用的商家或企業。而從未在線上或實際交易中產生過信息的全新商家和企業在沒有建立足夠的交易基礎之前是不太容易通過單純的信用方式進行這種融資的。無論是廣義還是狹義的定義,大數據金融的核心內容都是對商家和客戶的海量數據進行收集、儲存、發掘和整理歸納,使得互聯網金融機構能夠得到客戶的全方位信息,掌握客戶的消費習慣並准確預測客戶行為。這樣的做法不管是作為評級認定標准,還是作為目標客戶進行營銷宣傳的理由,都能夠使互聯網金融機構對自己的風險進行控制,對自己的發展策略進行更詳盡的規劃。作為大數據的使用者,互聯網金融機構必須為數據的採集和使用付出成本,如果不是同時作為數據的收集方,進行原始數據的採集和整理,那就要向數據來源的第三方支付使用費用。
二、大數據金融的發展機遇
1.互聯網企業自身轉型需要。隨著電商競爭愈演愈烈,最初的零售領域與支付領域的競爭已逐漸延伸到了整個供應鏈的其他環節,包括物流、倉儲,自然也包含了最重要的金融服務。盡快發展自身原有業務引申出來的大數據金融服務,有利於建立用戶黏性。積極地進行專業化、個性化定製金融服務對未來電商領域的全方位競爭有著十分重要的意義。
2.實體產業需要大數據金融的支持。大數據金融通過各種方式給市場帶來了活性,整個產業鏈的效率提升、資源配置優化是有目共睹的,虛擬經濟與實體產業的下一步發展,必定都離不開大數據金融的支持。打通上下游環節,使資金更有效率,無論是對電商的未來發展還是對傳統金融的突破都大有益處。
三、大數據金融面臨的挑戰
大數據使得互聯網金融得到空前的發展,同時也帶來了一系列的問題。原來的互聯網非金融機構從事類金融服務,給傳統的金融體系帶來了一定的沖擊,如何協調和處理好這兩者之間的關系,成了未來大數據金融發展至關重要的環節。未來,大數據金融的發展必將基於傳統金融行業與互聯網大數據技術的進一步融入和整合,這就要求金融服務與互聯網及大數據的關聯程度必須不斷加強。
1.必須推進金融服務與社交網路的進一步融合。使金融業的數據來源能夠脫離早期呆板滯後的提交、審批、盡職調查等來源方式。要使金融信息的獲取渠道能夠直接深入金融服務本身,就要利用互聯網、社交媒體等新的數據來源,從多渠道獲取實時客戶信息和市場信息,充分了解自標客戶的需求和資質情況,建立更高效的客戶關系與更完整的客戶視圖,並利用社交網路對忠實客戶和潛在客戶進行精準營銷和定製化金融服務的方案。

2.傳統金融機構要進行互聯網、大數據金融的轉型,必須要處理好與數據服務商的競爭、合作關系。目(下轉80頁)(上接76頁)前,線上互聯網企業由於占據極大的平台優勢,壟斷從交易發生到交易結算的各個環節以及這其中產生的各項數據信息,使傳統金融企業想要介入十分困難。要想在實際過程中重新組建自己的數據平台,從時間方面來看,已經處於劣勢。因此,傳統金融機構與數據服務商開展戰略合作是比較現實的選擇。
四、大數據金融的發展趨勢
大數據技術還遠未成熟,而大數據金融帶給我們的變化已足以讓人驚訝,大數據金融的未來也是一片光明。未來,隨著大數據技術的不斷成熟,大數據金融的發展也必將進一步改變人們的生活生產方式。
1.大數據金融跨界發展。由於互聯網技術的開放性,信息不對稱將顯著減少,金融在日後也許就不是少數傳統的金融從業者的專屬領域了。從供應鏈要求的技術來看,互聯網企業、軟體企業都紛紛加入大數據金融的開發中,大數據進入跨界發展的趨勢越來越明顯,金融業的競爭也將由於未來力量的沖擊變得更加激烈。這也可能導致將來金融業內部混業經營的進一步發展,銀行金融與非銀行金融的界限、證券公司與非證券公司之間的界限都可能變得非常模糊。

2.大數據金融服務多樣化。大數據金融從電商平台發展出來以後,不斷地整合發展傳統產業,從零售的日用百貨發展到電子產品,再到汽車,甚至是大宗商品交易,未來也會發展到房地產、醫療等方面,日常的金融服務也將不斷地擴展,綜合化、社會化、日常化。
3.大數據金融服務專業化。隨著涉足領域越來越廣泛,大數據金融必將產生專業化趨勢,產生更明確的產業鏈分工,根據不同的環節或者是不同的行業,其服務內容都將產生一系列的變化。同時隨著發展水平的提高,必定會有高要求的定製化服務、個性化服務要求,未來的大數據金融企業必將以客戶為中心,高度精準與定位客戶需求來制定專業的個性化服務。總而言之,大數據金融憑借高度數據化的管理和運作模式,在互聯網發展的今天有著不可替代的地位,將來大數據金融必將是金融業發展的中流砥柱,它將進一步滲透到各行各業的每一個角落,不斷地促進金融生態的發展。在不久的將來,每個人都將能夠切身體會到大數據金融帶來的變化,都能從大數據金融的發展中獲得益處。

⑹ 金融行業大數據怎麼玩

任何數據分析的前提是首先要理解業務模型,從你的金融數據是怎麼產生的,包括哪些指標哪些數據,你的分析是要為什麼業務服務的,也就是你的目的。比如你分析金融數據的目的是要找出最有價值的金融產品,還是最有價值的客戶,還是尋找最有效的成...
在企業信息化建設及互聯網行業的發展過程中,數據量的增長已經達到了前所未有的速度。廠商、分析師以及技術專家認為「大數據」(Big Data)時代已經到來,針對大數據的相關技術已經被IT部門提上了議事日程。除了如何存儲管理大數據,更為重要的問題...
在金融領域大數據用的好還是很不錯的。比如收集股民的投資信息就可以知道大眾的投資走向,你就可以關注這些行業。
實質是資源共享,為單一客戶提供綜合金融服務,說白了就是充分挖掘客戶家底。
大數據對金融行業的影響有很多方面吧,目前大數據的來源主要包括瀏覽、購買、搜索、關注、社交的用戶行為。對於金融行業來說最基本的影響就是對用戶的畫像更加精準了,傳統的數據如年齡職業住址聯系電話等信息自然不在話下,更重要的是對於用戶...
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。 有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大...
說到運用啊,樓主你知道「信誠人壽悅生活愛家行動」活動不,就是和堂傳媒運用了多屏互動手段和大數據手段。以40000+的有效用戶數據打破如今互聯網金融行業營銷記錄,也開創了大數據等技術運用的先河,可牛啦。
讓每一條查詢的關聯度提高,讓每一條查詢的相似查詢結果智能化顯示,人性化的羅列每一次查詢可能對應的結果,比搜索更貼心; 金融業的利率差將會更加復合資本的運作規律:行政化的切割線將會被套利資本沖垮、淹沒,收益率劃分的利率差切割線將會...
:)在我們的生活中,所有人都在製造和分享數據——但並非所有數據都能得到合理使用。這種數據缺乏帶來的信息不對稱,導致了金融行業中「二八定律」的出現。二八定律:在當前利率非完全市場化與小微企業抵押擔保品欠缺的情況下,採用傳統信貸技術從...
大數據可以挖掘和分析金融信息深層次的內容,使決策者能夠把握重點,引導戰略方向

⑺ 大數據金融風控解決方案哪些公司可以提供

我們就是可以的,大數據風控即大數據風險控制,是指利用數據分析和模型進行風險評專估,為金融行業和個屬人用戶提供全方位的安全保障。
大數據風控流程的建立主要分為四個階段:數據收集、數據建模、構建客戶評分體系及監測分析。收集到海量數據後,需經過大量的清洗、探索與抽樣,運用靈活策略來交叉匹配並綜合分析,構建出客戶評分體系。
基於先進的風控分析模型,以及准確、穩定、實時更新的豐富數據源,利用精密演算法和靈活策略進行綜合高效的監測分析,保障業務平台健康穩定運行。

閱讀全文

與城市大數據金融服務平台落地福建相關的資料

熱點內容
股份融資 瀏覽:55
翹然天津資本投資咨詢有限公司 瀏覽:456
融資融券寶典 瀏覽:29
定期理財規劃 瀏覽:599
恆大集團股票行情 瀏覽:6
信託信披 瀏覽:944
大眾公用股票分紅 瀏覽:637
寧波銀行後期查貸款用途 瀏覽:545
好好開車融資 瀏覽:300
融資租賃可行性報告 瀏覽:2
860日幣是多少人民幣 瀏覽:373
房奴如何理財 瀏覽:803
南昌住房公積金貸款計算器 瀏覽:427
國盛華興投資有限公司 瀏覽:822
工行貴金屬掛單四種 瀏覽:918
主力資金進出散戶資金進出指標公式 瀏覽:880
報雷理財 瀏覽:898
廣信股份股票 瀏覽:472
小額貸款怎麼收賬 瀏覽:798
基金交銀藍籌凈值519697 瀏覽:222